Per page:

All posts by Ed Fontes

Fat-Washing Cocktails on an Industrial Scale

February 2, 2017

Bacon-flavored vodka? Pecan-infused bourbon? The fat-washing process extracts the flavors from fat and dissolves it into alcohol, and it can even be scaled up to an industrial level.

Introduction to Modeling Natural Convection in COMSOL Multiphysics®

December 23, 2016

Natural convection is a phenomenon found in many science and engineering applications, such as electronics cooling, indoor climate systems, and environmental transport problems. The CFD and Heat Transfer modules in version 5.2a of the COMSOL Multiphysics® software include functionality that makes it easier to set up and solve natural convection problems. In this blog post, we give an overview of natural convection, the new functionality, and some of the difficulties that we may stumble upon when modeling natural convection.

New Reacting Flow Multiphysics Interface Delivers Greater Flexibility

September 9, 2016

In recent versions of the COMSOL Multiphysics® software, we’ve added several new multiphysics interfaces that include the constituent interfaces as separate physics interfaces, with the couplings predefined in the model tree’s Multiphysics node. This provides you with the best of both worlds, combining the flexibility of the constituent physics interfaces and the user-friendly nature of the predefined multiphysics couplings. The latest version of COMSOL Multiphysics® — version 5.2a — is no exception with the new Reacting Flow multiphysics interface.

Part 2: Simulation App Design Tips to Enhance User Workflow

May 10, 2016

In the first part of this blog series, we focused on designing a user interface with an ordered and clear structure. Today, we discuss tips for designing apps with an enhanced workflow and user experience. Learn about how to improve user workflow in your simulation app through structure, tooltips and warning messages that provide information, and more.

Part 1: Tips to Improve Simulation App Design and Structure

May 5, 2016

The Application Builder in the COMSOL Multiphysics® simulation software offers almost unlimited freedom in the design of apps. But as engineers, we need to balance our creativity with focus to avoid disorder in our simulation app design. In the first installment of a two-part blog series, we give a few guidelines that will help you create apps with a clear, streamlined design and structure.

Li-Ion Battery: Heterogeneous Alternative to the Newman Model

April 13, 2016

The Newman model and its variants form the standard theory used to successfully predict the behavior of lithium-ion battery design under a range of operating conditions. In the Newman model, the geometry of the porous structure of the battery electrodes is not described in detail; instead, typical averaged dimensions are used as input to describe the electrodes as homogeneous and isotropic materials. But how accurate is this approach compared to a detailed, heterogeneous geometric model? Let’s find out.

Free Surface Computations in Mixers and Rotating Machinery

January 26, 2016

The rotation of the impellers in a mixer or stirred reactor creates ripples on the liquid surface when the agitation is moderate. If the ripples are small in comparison to the height of the fluid in the vessel, the shape and height of the free surface can be explicitly calculated from the velocity field in a separate solution step. The latest version of the Mixer Module in COMSOL Multiphysics includes a Stationary Free Surface feature for such computationally inexpensive calculations.

Simulate Three-Phase Flow with a New Phase Field Interface

December 16, 2015

In COMSOL Multiphysics version 5.2, the CFD and Microfluidics modules include a new fluid flow interface for modeling separated three-phase flow. The model behind this fluid flow interface accounts for surface tension between each pair of fluids, contact angles with the walls, as well as the density and viscosity of each of the fluids. The phase field method computes the shape of the interfaces between the three phases and also accounts for interactions with walls.