Per page:

Electrical Blog Posts

Designing a Power Generation Source for Bicycle Safety Lights

November 22, 2016

Today, we invite guest blogger Rune Thygesen of Reelight to discuss designing a power generation source for bicycle safety lights using simulation. At Reelight, we are developing an affordable bicycle safety light that is extremely easy for the end user to install. Along with a stronger and more flexible mounting system, we needed to develop a new power generation platform. Using simulation-based design, we created a power platform that is easy to use and quick to install.

Students Use Simulation to Optimize Hyperloop for Design Competition

November 8, 2016

Today, we invite guest blogger Bauke Kooger of Delft University of Technology to discuss modeling a magnetic suspension system for the Hyperloop. The Hyperloop is a proposed mode of transportation in which a vehicle, or pod, travels at the speed of sound through a low-pressure tube. At this speed, a magnetic suspension offers several advantages over systems such as air bearings or wheels. To test this, Delft’s Hyperloop team modeled their pod’s magnetic suspension in the COMSOL Multiphysics® software.

Introduction to Efficiently Modeling Antennas in COMSOL Multiphysics®

October 31, 2016

To keep our antenna modeling process efficient and accurate, we should start with a simple geometry and then gradually add more complex features. The final simulation needs to include enough detail to accurately represent our design, while excluding elements that needlessly increase the computational cost. To demonstrate this, we look at an anechoic chamber example, which is used to characterize antenna performance, before examining how this process applies to several antenna examples available in the COMSOL Multiphysics® software.

How to Automate Winding Design in Electrical Machines with an App

October 26, 2016

Aside from the winding type, concentrated or distributed, the logic behind the design of electrical machines is relatively similar, as it’s based on their phasor diagrams. Using an induction motor benchmark model with a concentrated winding, we’ll show you how to create selections in the COMSOL Multiphysics® software to streamline the analysis of your winding design. We’ll then demonstrate how to further advance your simulation studies by automating these processes with the Application Builder.

MIT’s PSFC Designs a Tokamak to Survive Plasma Disruptions

October 17, 2016

Developing a device that generates nuclear fusion would provide a nearly limitless amount of clean energy on Earth. But while work on thermonuclear fusion began in the 1950s, engineers are still trying to make this goal a reality. One approach has been to use magnetic confinement devices known as tokamaks. See why a group of engineers at MIT’s Plasma Science Fusion Center (PSFC) turned to simulation to address a key challenge in tokamak design: instability due to plasma disruptions.

Sampling from Phase Space Distributions in 3D Charged Particle Beams

September 22, 2016

In the previous installment of this series, we explained two concepts needed to model the release and propagation of real-world charged particle beams. We first introduced probability distribution functions in a purely mathematical sense and then discussed a specific type of distribution — the transverse phase space distribution of a charged particle beam in 2D. Now, let’s combine what we’ve learned and find out how to sample the initial positions and velocities of 3D beam particles from this distribution.

Understanding the Paraxial Gaussian Beam Formula

September 21, 2016

The Gaussian beam is recognized as one of the most useful light sources. To describe the Gaussian beam, there is a mathematical formula called the paraxial Gaussian beam formula. Today, we’ll learn about this formula, including its limitations, by using the Electromagnetic Waves, Frequency Domain interface in the COMSOL Multiphysics® software. We’ll also provide further detail into a potential cause of error when utilizing this formula. In a later blog post, we’ll provide solutions to the limitations discussed here.

Phase Space Distributions and Emittance in 2D Charged Particle Beams

September 19, 2016

Previously in our Phase Space Distributions in Beam Physics series, we introduced probability distribution functions (PDFs) and various ways to sample from them in the COMSOL Multiphysics® software. Such knowledge of PDFs is necessary to understand how ion and electron beams propagate within real-world systems. In this installment, we’ll discuss the concepts of phase space and emittance as they apply to the release of ions or electrons in beams.