Maintaining Cold Temperatures in an Isothermal Box with Simulation

Bridget Paulus December 31, 2018

An air ambulance flies overhead, speeding toward a hospital with a life-saving treatment. This “treatment” isn’t a new medicine or machine but an organ on its way to a patient on a transplant list. To keep the organ at just the right temperature during transport, it’s placed inside a special container called a cold or isothermal box. By using simulation, you can analyze the design of these boxes, making sure that they’re reliable for their life-saving purpose.

Read More

Thomas Forrister December 26, 2018

Radioactive materials have a long half-life, so they must be stored safely — usually in steel drums. These drums are then stored in confinement systems, which are designed with safety in mind (so that they can resist, for instance, a fire event exceeding two hours). Sogin, the state-owned company responsible for the Italian nuclear sites decommissioning and radioactive waste management, evaluated the fire resistance of a confinement system overpack using the COMSOL Multiphysics® software.

Read More

Emily Ediger December 25, 2018

Optimizing the food dehydration process can be tricky, but it is helpful and necessary for areas with food shortages. In his keynote presentation at the COMSOL Conference 2018 Lausanne, Thijs Defraeye of Empa discussed how his team uses multiscale modeling to understand the drying process for soft cellular foods. If you missed his talk, you can watch a video recording of the presentation and read a summary below.

Read More

Walter Frei November 21, 2018

Did you know that the COMSOL Multiphysics® software allows you to have different discontinuous meshes in neighboring domains? Although the usual default behavior of the software is to use aligned meshes, there are times when we might like to have discontinuous meshes, such as for modeling conjugate heat transfer. Let’s delve deeper into this topic and see how these meshes can save us time and memory in our initial model development with just a little bit more effort.

Read More

Yosuke Mizuyama November 1, 2018

Even though the first man-made light source used thermal radiation, the effect wasn’t fully understood until the discovery of quantum mechanics. Nowadays, it’s a well-known physics concept. In this blog post, we discuss surface-to-surface radiation theory for the so-called gray body, how to implement it in the COMSOL Multiphysics® software, and an interesting use of this theory.

Read More

Caty Fairclough October 4, 2018

Imagine that you’re indoors during a thunderstorm, watching raindrops trickle down the window. Despite the storm, you remain dry and warm thanks to the building envelope protecting you from the outside environment. To design a well-functioning building envelope, engineers need to account for a variety of different factors. Simulation can help address this need.

Read More

Thomas Forrister September 20, 2018

After a pleasant day at the beach, you open your car door. It’s warm inside the vehicle, but it’s nothing a little air conditioning can’t fix. Then you sit down. The seat is burning hot, making for an uncomfortable ride home. Fortunately, there’s a way to avoid this scenario: Engineers can use thermoelectric devices that leverage the Seebeck and Peltier effects to control the temperature of car seats (among other applications).

Read More

Bridget Paulus August 6, 2018

Efficient, cost effective, and environmentally friendly, friction stir welding (FSW) is useful for many applications. As the name implies, this process involves using friction to heat materials and then stirring them together. For optimal FSW performance, the generated heat has to be just the right temperature: Too high and the materials melt, weakening the weld; too little and the process is inefficient. Using the COMSOL® software, you can evaluate and improve heat transfer in the FSW process.

Read More

Guest Bojan Jokanović July 5, 2018

Guest blogger Bojan Jokanović of SGL Carbon GmbH, one of the world’s leading manufacturers of carbon-based products, discusses the optimization of thermal processes in the carbon industry. Carbon products are used in many industries, including semiconductors, car manufacturing, ceramics, and metallurgy. Properties of graphite including high-temperature stability, good thermal and electric conducting behavior, and high chemical stability make this material unique. However, carbon manufacturing is an energy-intensive industry. We must build digital process chains to optimize processes and minimize costs.

Read More

Nicolas Huc March 15, 2018

Nonisothermal flow combines CFD and heat transfer analysis. In cases where the temperature of the fluid at an inlet is a known quantity, a Temperature boundary condition can be used. However, there are some important situations where this is not the case, and an Inflow boundary condition can improve the model accuracy and reduce the computational cost of the simulation. Here, we review how this more sophisticated thermal boundary condition can be set at a flow inlet.

Read More

Guest Mandar Gadgil March 12, 2018

Guest blogger Mandar Gadgil of Noumenon Multiphysics discusses modeling phase change in a thermosiphon. Thermosiphons have been used for keeping houses warm since the 1800s. These devices use central heaters and pipe networks that carry water and steam to different rooms. The cool part (figuratively) is that no pump is needed for fluid transport — convective currents induced by the heater located at the bottom of an installation are enough. Let’s discuss modeling thermosiphons using a “pseudofluid” with temperature-dependent properties.

Read More



1 2 3 14