Per page:
Search

Piezoelectric Devices Blog Posts

Benchmark Shows Valid Results for a Piezoelectric Transducer Design

September 7, 2016

Many modern devices leverage piezoelectricity. When analyzing the design of such devices, you want to be confident in the reliability of the obtained results. By utilizing the COMSOL Multiphysics® simulation software, you can achieve accurate results quickly. To prove it to you, we have created a benchmark model of a piezoelectric transducer.

Simulation Improves Range of Motion in Piezoelectric Actuators

February 15, 2016

Piezoelectricity finds use in a variety of engineering applications. They include transducers, inkjet printheads, adaptive optics, switching devices, cellphone components, and guitar pickups, to name a few. Today’s blog post will benefit both beginners and experts in piezoelectricity, as we highlight some of the fundamental elements of piezoelectric theory and basic simulations, along with a novel design for improving the range of motion for piezoelectric actuators.

Piezoelectric Materials: Applying the Standards

January 27, 2016

Previously on the blog, we detailed the standards employed to describe piezoelectric materials. There are two piezoelectric material standards supported in COMSOL Multiphysics: the IRE 1949 standard and the IEEE 1978 standard. Today, we will demonstrate how to set up the orientation of a crystal, specifically an AT cut quartz plate, within both standards.

Optimizing the Power of a Piezoelectric Energy Harvester

October 2, 2015

Over the years, energy harvesting has become a popular approach to power small wireless devices. For energy harvesters to yield optimal results, it is important that their design configurations maximize the level of power transfer. Here, we will explore the role of simulation in advancing the design of a piezoelectric energy harvester.

Modeling a Stacked Piezoelectric Actuator in a Valve

May 13, 2015

Piezoelectric valves are opened and closed by stacked piezoelectric actuators that are positioned above a seal. By applying a voltage to the stacked piezoelectric actuator, it can be made to expand or contract and the resulting deformation is used to open and close the valve. In this blog post, we feature a tutorial model of a stacked piezoelectric actuator in a pneumatic valve, new with COMSOL Multiphysics version 5.1.

New Piezoelectric Modeling Interface in COMSOL 5.0

December 30, 2014

We have introduced a new interface for simulating piezoelectric devices in version 5.0 of the COMSOL Multiphysics simulation software. This interface aims to achieve several things. In this blog post, I will explain what these things are and how you can use them.

Piezoelectric Materials: Understanding the Standards

October 2, 2014

Standards form an integral part of the work we do as engineers, providing a common language for communicating complex information. But standards committees are not omnipotent and sometimes revised standards are not universally adopted. This has happened in the case of the standards for piezoelectric materials, particularly for quartz. This blog post explains the multiple standards used to describe piezoelectrics in literature. Although the particular focus of this post is on quartz, the standards described apply for any piezoelectric material.

Piezoelectric Materials: Crystal Orientation and Poling Direction

February 14, 2014

The direct and inverse piezoelectric effects are strongly related to how anisotropic the material is, which in turn is related to the crystalline structure of the piezoelectric material. The extent of anisotropy can also be influenced by a process called poling. Here, I’ll discuss how you can correctly model the crystal orientation and poling direction of a piezoelectric material in your COMSOL simulations.


EXPLORE COMSOL BLOG