Per page:
Search

Fluid Blog Posts

Modeling Static Mixers

November 9, 2012

A mixer that doesn’t move may sound like an oxymoron, but it’s not. Used in various chemical species transport applications, static mixers are inexpensive, accurate, and versatile. Still, there is always room for improvement. Optimizing the design of static mixers calls for computer modeling, but traditional CFD methods may not be the best way to model these mixers. How do these motionless mixers work and how can their performance be simulated?

Vacuum System Simulations Webinar and Videos

November 1, 2012

Since I joined COMSOL in 2010 I’ve presented about half a dozen webinars. Last week we held a webinar on Vacuum System Simulations and it was definitely the most fun webinar to-date. Historically, simulation has not been used extensively in the vacuum industry, so I was nervous that there wouldn’t be much interest in such a specialized topic.

Microfluidics Model of an Electroosmotic Micromixer

October 31, 2012

When you need to mix something at a very small scale you don’t reach for a teeny-tiny whisk. If you’re working with microscale biochemical applications you’d be more likely to rely on diffusion to mix fluids. With highly ordered laminar flow there is no turbulence involved, thus making diffusion a prime candidate for “getting the job done”. But what if you need to mix larger molecules? Larger molecules mean higher molecular weight, which in turn leads to very long equilibration […]

FSI: Aluminum Extrusion Model

October 26, 2012

Out of all metals, the most frequently extruded is aluminum. Aluminum extrusion entails using a hydraulic ram to squeeze an aluminum bar through a die. This process will form the metal into a particular shape. Extruded aluminum is used in many manufacturing applications, such as building components for example. The process of shaping metal alloys, like aluminum, can be modeled using COMSOL Multiphysics.

Oil Companies Rely Heavily on Engineers

October 24, 2012

It’s no secret that there’s a lot of guesswork involved in oil production. Oil companies make “Big Money” decisions based on estimates – estimates with huge margins of error. What’s more, there is an incredible amount of risk involved, but with the potential for a large pay-off if all goes according to plan. The plan is based on “best guesses” and less than perfect data. Still, there are many big players in the oil industry that are doing very well […]

Poroelasticity in Sand

October 23, 2012

When you work with multiphysics all day you tend to notice physics phenomena everywhere you go. For me, one such moment was when I was walking on the beach this past summer. I noticed that the sand appears whiter around a person’s feet than elsewhere. You may have noticed this too, and like I, wondered “why?” This phenomenon can be explained by the theory of poroelasticity.

Solar Radiation: How Engineers Can Stay Cool on the Beach (Maybe)

August 29, 2012

The end of August marks the end of summer here in New England. Already nostalgic and unwilling to let the season go, I decided to look into some “beach physics”. In May we released a new solar radiation feature in our Heat Transfer Module that will be helpful in many solar applications — including how to avoid overheating on the beach, apparently. Here’s how engineers can stay cool on the beach.

Modeling a Light Bulb, All Forms of Heat Transfer

August 21, 2012

When it gets dark, you flick on the lights. If you were to model this simple example, you would need to take all forms of heat transfer within consideration; convection, conduction, and radiation are all at play when a light bulb is flicked on.


EXPLORE COMSOL BLOG