Per page:

Mechanical Blog Posts

Keynote Video: Locating Leaks in Pipe Networks with a Simulation App

January 16, 2017

Sebastien Perrier of Echologics discusses a simulation application used to locate leaks in underground pipe networks in his keynote presentation at the COMSOL Conference 2016 Boston.

How to Model an Anechoic Coating

January 5, 2017

Modeling an anechoic coating involves finding the smallest unit cell, truncating the geometry, and analyzing the wave diffration. The COMSOL® software includes predefined interfaces to do so.

Perform Rotordynamic Analyses of a Reciprocating Engine’s Crankshaft

January 2, 2017

You can use the Rotordynamics Module, an add-on to COMSOL Multiphysics®, to analyze the design of a crankshaft for a reciprocating engine.

Simulation Delivers Reliable Results for Piezoresistive Pressure Sensors

December 26, 2016

Designing MEMS devices, such as piezoresistive pressure sensors, comes with challenges. For instance, accurately describing the operation of these devices requires the integration of various physics. With the COMSOL Multiphysics® software, you can easily couple multiphysics simulations in order to test a device’s performance and generate reliable results. Today, we’ll look at one example that showcases such capabilities.

Optimize 3D Printers by Modeling the Glass-Transition Temperature

December 22, 2016

In 3D printers, suboptimal cooling and cure rates can negatively affect the manufactured parts and components. By optimizing a 3D printer’s design, we can ensure the quality of the printed objects. One research group used simulation to analyze the cooling process and the resulting glass-transition temperature of the polymer in a 3D printer. Let’s look at how they modeled the extrusion of acrylonitrile butadiene styrene (ABS) from a 3D printer that uses fused-deposition modeling (FDM®).

Study Sensor Performance in Rapid Thermal Annealing with Simulation

December 16, 2016

In rapid thermal annealing, a process step in producing semiconductors, measuring the temperature of a wafer is key. Without accurate measurements, overheating and nonuniform temperature distributions may occur, both of which impact the effectiveness of the process. This is why tools like the COMSOL Multiphysics® software give you the ability to analyze temperature distributions within an RTA design. From these results, you can better assess the performance of the sensor component and optimize its configuration to achieve accurate measurements.

How to Evaluate Gear Mesh Stiffness in a Multibody Dynamics Model

December 9, 2016

When performing a noise, vibration, and harshness (NVH) analysis of a transmission system, the elasticity of the gear mesh plays a crucial role in obtaining useful results. To help you create an accurate gear simulation, new features and functionality in the COMSOL Multiphysics® software enable you to evaluate gear mesh stiffness. Today, we’ll explain why it’s important to account for gear mesh elasticity as well as how to compute and include gear mesh stiffness in your multibody dynamics model.

Analyze a Variety of Rotating Machines with the Rotordynamics Module

December 6, 2016

When modeling a rotating machine, it’s important to study the vibrations influencing its behavior in order to avoid machine failure. One way to accomplish this is with the new Rotordynamics Module, an expansion to the add-on Structural Mechanics Module for the COMSOL Multiphysics® software. Today, we’ll introduce you to the Rotordynamics Module and walk you through its helpful features and functionality for improving your rotating machinery design process.