## Using Simulation to Analyze Arterial Wall Mechanics

##### Bridget Cunningham October 12, 2015

Arteries are designed to carry blood containing oxygen and nutrients from the heart to other areas of the body. Studying this biological soft tissue from a mechanical standpoint requires a reliable model that can fully describe the arteries’ anisotropic nonlinear response. Our tutorial of arterial wall mechanics illustrates such a design.

### Modeling Microresonators with Electrostatic Actuation

##### Chandan Kumar October 8, 2015

MEMS resonators are microelectromechanical systems primarily used as sensor elements, filters, and frequency elements. Two common actuation methods for MEMS resonators are piezoelectric actuation and electrostatic actuation. In this blog post, we will discuss the modeling of electrostatically actuated MEMS resonators. When modeling such resonators, you will often come across terms such as equilibrium point, pull-in, pull-in voltage, and time harmonic response of a biased resonator. We will explain these phenomena using a simple representation of an actuator.

### Corrosion in Oil Platforms

##### Brianne Costa October 7, 2015

While the offshore oil industry is usually very profitable, it can also be unpredictable, and at times, dangerous. Corrosion in steel oil platforms can lead to damage and failure of the structure, loss of business, and even on-site accidents. Fortunately, there are various ways to investigate and prevent corrosion in these structures to ensure a safe and productive drilling operation.

### Modeling Linear Motors or Generators in COMSOL Multiphysics

##### Nirmal Paudel October 6, 2015

The Rotating Machinery, Magnetic physics interface available in the AC/DC Module is used to model rotating machines such as motors or generators. When modeling the linear or tubular device with the Magnetic Fields and the Moving Mesh physics interfaces, it is appropriate to use a customized linear periodic boundary condition. In this blog post, we will explore how to customize the linear periodic boundary condition and model the tubular generator that is used for wave energy.

### Part 2: Mapping Variables with General Extrusion Operators

##### Temesgen Kindo October 5, 2015

Previously on the blog, we introduced you to Linear Extrusion operators and demonstrated their use in mapping variables between a source and a destination. This approach, as explained earlier, is limited to cases in which the source and destination are related by affine transformations. Today, we will discuss General Extrusion operators, which are designed to handle nonlinear mappings and the mapping of variables between geometric entities of different dimensions.

### Optimizing the Power of a Piezoelectric Energy Harvester

##### Bridget Cunningham October 2, 2015

Over the years, energy harvesting has become a popular approach to power small wireless devices. For energy harvesters to yield optimal results, it is important that their design configurations maximize the level of power transfer. Here, we will explore the role of simulation in advancing the design of a piezoelectric energy harvester.

### A Thermoviscous Analysis of Acoustic Radiation Forces

##### Mads Herring Jensen October 1, 2015

This past July, I had the pleasure of attending the 22nd International Congress on Sound and Vibration. In addition to running the COMSOL vendor booth with my Italian colleague Gabriele, I was also a presenter at the event. My presentation was based on a paper I wrote with Henrik Bruus and Jonas Karlsen that focuses on how to determine acoustic radiation forces including thermoviscous effects. Let’s explore acoustophoretic effects in greater detail and the research findings highlighted in my presentation.

### Accessing Nonlocal Variables with Linear Extrusion Operators

##### Temesgen Kindo September 29, 2015

In many simulation tasks, it is necessary to transfer variables from one region of a computation domain (the source) to another region or component (the destination). In COMSOL Multiphysics, this functionality is achieved by defining a point-to-point map, called an extrusion operator, that relates a set of destination points with a set of source points. Once a mapping is established by an extrusion operator, all variables defined at the source can be accessed from the destination using the same operator.

### Göttingen, a University Town with a Rich Scientific History

##### Bridget Cunningham September 25, 2015

Göttingen, Germany, a city located in the valley of the Leine River, is home to one of our COMSOL branch offices. Recognized as a university town, the city features a vibrant and youthful atmosphere, with an emphasis on freedom in scientific research and exploration. Let’s take a closer look at the history of Göttingen’s prestigious university — the University of Göttingen — and learn more about the character and feel of the city.

### Improving Nuclear Reactor Designs with Simulation

##### Pankaj Nerikar September 24, 2015

In an operating nuclear reactor, complex and highly coupled physical phenomena occur. Analyzing such phenomena within these devices by conducting physical experiments is often difficult and sometimes impossible. Simulation offers a simplified approach to studying and optimizing nuclear reactor designs, saving time, money, and other resources.

### Finding a Structure’s Best Design with Topology Optimization

##### Benjamin Loubet September 23, 2015

Think about the first architects who designed a bridge above water. The design process likely included several trials and subsequent failures before they could safely allow people to cross the river. COMSOL Multiphysics and the Optimization Module would have helped make this process much simpler, if they had computers at the time, of course. Before we start to discuss building and optimizing bridges, let’s first identify the best design for a simple beam with the help of topology optimization.