Using Discontinuous Meshes for Conjugate Heat Transfer Modeling

Walter Frei November 21, 2018

Did you know that the COMSOL Multiphysics® software allows you to have different discontinuous meshes in neighboring domains? Although the usual default behavior of the software is to use aligned meshes, there are times when we might like to have discontinuous meshes, such as for modeling conjugate heat transfer. Let’s delve deeper into this topic and see how these meshes can save us time and memory in our initial model development with just a little bit more effort.

Read More

Jose Gregorio November 19, 2018

Global modeling of plasmas is a powerful approach to study large chemistry sets. In these models, the reactions are represented by rate coefficients. In particular, the rate coefficients of electron impact collisions depend on the electron energy distribution function (EEDF), which is often non-Mawellian and can be computed from an approximation of the Boltzmann equation (BE). Here, we explain how to create a global model fully coupled with the BE in the two-term approximation using the COMSOL Multiphysics® software.

Read More

Lars Gregersen November 15, 2018

Looking for an easy — and visually enticing — way to share 3D results plots from the COMSOL Multiphysics® software? In this blog post, we demonstrate how to export your 3D plots as glTF™ files and share them in a variety of web-based graphics viewers, and even in Facebook® posts.

Read More

Shruti Srivastav November 13, 2018

Electroplating is commonly used for surface finishing due to its effectiveness across the automotive, electronics, corrosion protection, aerospace, and defense industries. Since WWII, the number of patents claiming to achieve “perfect plating” has increased exponentially. The focus of the narrative surrounding electrochemical plating has also shifted from complex chemical reactions toward perfecting operating conditions. In this blog post, we show how to achieve smoother metal surfaces during reverse pulse plating (RPP) using the COMSOL Multiphysics® software and add-on Electrodeposition Module.

Read More

Mats Danielsson November 7, 2018

Material deposition is an essential ingredient in certain manufacturing processes, including welding and additive manufacturing. Say that you want to simulate such a manufacturing process. A challenge that you will face during the simulation is depositing material in a way that introduces it in a state of zero stress. Here, we look at the Activation functionality in the COMSOL Multiphysics® software and how it facilitates the simulation of material deposition.

Read More

Amelia Halliday November 6, 2018

To help understand the complicated universe we live in, we have compartmentalized physics phenomena into distinct disciplinary specializations. However, natural and engineering problems often cross these utilitarian borders. A major strength of the COMSOL Multiphysics® software is the ease with which such cross-disciplinary interactions, which we refer to as multiphysics interactions, can be accounted for. The COMSOL® software provides a plethora of built-in multiphysics couplings and even enables users to implement their own physics couplings.

Read More

Christopher Boucher November 5, 2018

Modern optical systems are often required to operate in harsh environments, including high altitudes, space, underwater, and in laser and nuclear facilities. Such optical systems are subjected to structural loads and extreme temperatures. The most accurate way to fully capture these environmental effects is through numerical simulation via a structural-thermal-optical performance (STOP) analysis. STOP analysis is the quintessential multiphysics problem. In this blog post, we show how to combine structural, thermal, and optical effects using the COMSOL Multiphysics® software.

Read More

Yosuke Mizuyama November 1, 2018

Even though the first man-made light source used thermal radiation, the effect wasn’t fully understood until the discovery of quantum mechanics. Nowadays, it’s a well-known physics concept. In this blog post, we discuss surface-to-surface radiation theory for the so-called gray body, how to implement it in the COMSOL Multiphysics® software, and an interesting use of this theory.

Read More

Chien Liu October 29, 2018

The effect of quantum tunneling can be important if the thickness of the energy barrier for the charge carrier is comparable to or smaller than the evanescent decay length. In order to account for this effect, we can use the WKB Tunneling Model feature, available in the Semiconductor Module as of version 5.4 of the COMSOL® software, for the heterojunction and Schottky contact boundary conditions. Here, we demonstrate their usage using a benchmark model.

Read More

Walter Frei October 22, 2018

One of the core strengths of the COMSOL Multiphysics® software is the ability to easily define loads and constraints that move over time. There are actually several different ways in which this can be done, all within the core functionality of the software. In today’s blog post, we will guide you through three of these approaches.

Read More

Chien Liu October 18, 2018

The Schrödinger-Poisson Equation multiphysics interface simulates systems with quantum-confined charge carriers, such as quantum wells, wires, and dots. Here, we examine a benchmark model of a GaAs nanowire to demonstrate how to use this feature in the Semiconductor Module, an add-on product to the COMSOL Multiphysics® software.

Read More


Categories


Tags

1 2 3 45