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Abstract: In this paper, the analytical validation 
of Poisson-Boltzmann (PB) equation computed 
with Comsol Multiphysics, in the case of a 
polarized surface in contact with the electrolyte 
[1]-[2], is first presented. Comsol Multiphysics 
algorithms easily handle the highly nonlinear 
aspect of the PB equation. The limitations of the 
PB model, that considers ions as pointlike 
charges, are outlined. To account for the steric 
effects of the ion crowding at the charged 
surface, the Modified Poisson-Boltzmann model, 
proposed by Kilic et al. [3], is analysed for 
symmetric electrolytes. The MPB equation is 
then coupled to the complex AC electrokinetic 
and the Navier-Stokes equations to simulate the 
AC electroosmosis flow observed inside an 
interdigitated electrodes microsystem [4]-[6]. 
 
Keywords: numerical simulation, Poisson-
Boltzmann, Finite Element Method, AC 
electrokinetics. 
 

1. Introduction 
 

The Electrical Double Layer (EDL) represents 
the interface between a solid surface (polarized 
electrode) and an electrolyte. The charged 
surface attracts nearby counterions and repels 
coions present in the solution. In microsystems, 
the same electrostatic phenomenon is also 
present around charged nanoparticles 
(biomolecules, latex beads…) immersed into an 
electrolyte: they experience electrostatic 
interactions which give rise to a counterion 
cloud. The EDL or the counterion cloud is likely 
to react to the applied electric fields and can 
strongly influence various electrical phenomena 
such as dielectrophoresis, electrophoresis of 
polyelectrolytes (DNA, proteins,…) or AC 
electrokinetic flows.  

RC circuit models are widely used by 
electrochemists for representing the EDL. 
However, in microsystems where applied electric 
fields can be very strong because of the very 

small dimensions, this approximation fails [3] 
[7]. Despite the explosive growth of multiscale 
modeling for microfluidics, where the continuum 
is usually coupled to Molecular Dynamics 
techniques, we investigated here the use of 
coupled continuum models, based on the 
Poisson-Boltzmann (PB) equation. For us, it is 
interesting to represent the EDL using the 
Comsol Multiphysics software application 
because its strong coupling to macroscopic 
equations (Navier-Stokes in our case) is possible. 
 
2. Theory 
 
2.1 The electrical double layer 
 

In this paper, we consider that electrodes are 
ideally polarizable i.e. that no electron transfer 
(electrochemical) reactions occur at the 
electrode. The model which gave rise to the term 
'electrical double layer' was first put forward in 
the 1850's by Helmholtz. In order for the 
interface to remain neutral, the charge held on a 
polarized electrode is balanced by the 
redistribution of ions close to the electrode 
surface. In Helmholtz's view of this region, the 
attracted ions are assumed to approach the 
electrode surface with a distance assumed to be 
limited to the size of the ion: the overall result is 
two layers of charge (the double layer) and a 
linear potential drop which is confined to this 
region only. A later model put forward by Gouy 
and Chapman supposed that ions are able to 
move in solution and so the electrostatic 
interactions are in competition with Brownian 
motion. The result is still a region close to the 
electrode surface containing an excess of one 
type of ion but now the potential drop is 
exponential and occurs over the region called the 
diffuse layer: 
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Figure 1. The Gouy-Chapman representation of the 
EDL used by the PB equation. 

 
The most common representation of the 
Electrical Double Layer (EDL) is due to Stern 
(1924): the EDL is composed of two layers (see 
Figure 2). The inner layer (called the compact 
layer) which is in contact with the electrode and 
where ions are absorbed on to the surface due to 
high electrostatic interactions. Outside the 
compact layer, there is the diffuse double layer:  

 
        

 
 
 

 
 
 
 
 
 
 
 

 

Figure 2. The Stern representation of the EDL 
composed of the compact layer and the diffuse layer. 
The variation of the electrical potential V thru the 
EDL (red line) is represented for the case of a 
positively charged surface. 

The potential at the interface between the 
compact and the diffuse layer is called the zeta 
potential ζ which can be determined from 
electrokinetics measurements. 
 
2.2 The Poisson-Boltzmann equation 
 

The Poisson-Boltzmann (PB) theory is based 
on the Gouy-Chapman representation [3].  The 
diffuse layer is considered to be directly in 
contact with the charged surface who’s potential 
or charge is known (see Figure 1). 

We will see in this section that the PB theory 
predicts that the surface potential decreases 
exponentially in the EDL. This is the screening 
phenomenon of the surface charges by the 
counterions.   
Because the PB equation has limitations (see 
section 3.2), we voluntary name the electric 
potential used in the PB equation by ψ instead of 
V used in the Stern representation (Figure 2). In 
the PB equation, ions are supposed to be 
pointlike charges, the ionic solution is supposed 
to be a dilute solution (so the ions do not interact 
with each other) and the solvent (water) is 
considered as a continuum dielectric of 
permittivity ε = r0εε . The charges of the surface 

induce an electric potential ψ (V) in the 
electrolyte which acts on each specie of ions. 
Each ion concentration distribution ci (ions/m3) 
is given by the Boltzmann distribution where 
electrostatic (zieψ) and thermal (kT) energies 
balance each other: 

kT

ez

ii

i

ecc
ψ

−∞=
           

(1) 
∞∞ = cnc ii   is the ion i concentration in the bulk 

( in being the number of ions i in the electrolyte 

formula, ∞c  is the bulk concentration), T is the 
temperature (K) and k the Boltzmann constant 
(1.38 10-23 J/K). e is the proton charge (1.6 10-

19C) and zi is the ion i charge number. For 
convenience, concentrations can be expressed in 

Molar unit (M = mole/L):   Ai
3

i Nc10M =   

where NA is the Avogadro’s number (6.022 
1023).       

Each ion distribution corresponds to a 
volume free charge distribution qi  such that: 

iii cezq =             (2) 

In return, the total free charge density 

∑∑ ==
i

ii
i

i cezqq
         

(3)
 

acts on the potential distribution thru the Poisson 
equation which links the electric potential ψ to 
its sources (q): 

( ) q. =ψ∇ε−∇
rr

           (4) 

Combining (4) with (1) gives rise to the non 
linear Poisson-Bolztmann (PB) equation: 
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ψ−∞=ψ∇ε−∇

i
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      (5) 

The boundary conditions associated to the PB 
equation are the classical ones used in 
electrostatics (see Figure 3). On the electrode E, 
the potential Eψ  corresponds to the following 

surface charge density [8]: 

E

E n
n.D

∂
ψ∂ε−==σ

rr
          (6) 

 
  
 
 
 
 
 
 
 

Figure 3. Boundary conditions associated to the PB 
equation for a 2D semi-infinite electrolyte in contact 
with a flat charged surface. 

 
In the particular case of a binary symmetric 
electrolyte (for example KCl or MgSO4, 

zzz == −+ , ∞∞
−

∞
+ == ccc ), the PB equation 

becomes the Gouy-Chapman (GC) equation [1] 
[3]: 

( ) 






 ψ−=ψ∇ε−∇ ∞

kT

ez
sinhcez2.

rr
  (7) 

2.3 The Debye-Huckel theory: the linearized 
PB equation 
 
The linearization of the GC equation is obtained 
under the assumption that the electrostatic 
energy is small compared to the thermal energy: 

ez

kT
T =ψ<<ψ           (8) 

At room temperature (298 K), for monovalent 
ions (z = 1) ψT ~ 26 mV, for divalent ions, ψT ~ 
13 mV. Under assumption (8), equation (10) can 
be linearized: 

( ) ψ−=ψ∇ε−∇
∞

kT
cez2

.
22rr

      (9) 

This equation admits the following solution: 

1

z

e)z(
−κ

−
ζ=ψ            (10) 

When moving away from the polarized 
electrode, the potential decreases exponentially 

with a characteristic length 1−κ  called the Debye 
length: 

∞
− ε=κ

cez2
kT

22

1           (11) 

The Debye length (λD) is widely used to estimate 
the EDL thickness because its simple formula 
depends only on the electrolyte characteristics. In 
this paper, we always consider the case of an 
aqueous electrolyte (εr = 78.5) at ambient 
temperature (298 K).  
 
3. Numerical simulation of the PB and the 
MPB equations 
  

Using the Debye-Hückel theory is quite 
restrictive for microsystems because applied 
electrode potentials are often much greater than 
ψT. The PB equation is highly non linear and our 
first concern is evaluating how Comsol 
Multiphysics and the Finite Element Method 
can handle this difficulty.  

 
3.1 Analytical validation of the PB equation 
 

The PB equation is implemented in Comsol 
Multiphysics as a PDE equation. The 
validation of the PB numerical model is made by 
the comparison of numerical solutions from PB 
and GC equations (5) and (7) with analytical 
solutions in the case of binary symmetric semi-
infinite electrolytes in contact with a flat 
polarized surface [1]: 








 ψ
=ψ κ− zE e)

kT4

ze
tanh(harctan

ze

kT4
)z(  (12) 

 Tests are performed on the geometry of 
Figure 3 for two different types of electrolytes 
(1:1 and 2:2), variable bulk concentrations, 
variable surface potentials ψE. In the two 
following figures, the curves were drawn for 
surface potentials ψE of +50 mV and +1V and 

bulk concentrations ∞c
 
of  0.01M and 0.1M. 

insulation: 
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The numerical solution of both the CG equation 
(5) and the PB equation (7) is in a good 
agreement with the analytic solution (12). 
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Figure 4. Comparison of numerical (black = PB, blue 
= GC) and analytical (red) electric potentials for a 1:1 
electrolyte at bulk concentrations of 0.01 M and 0.1 
M. ψE = +50mV. z (nm) is the distance from the 
electrode surface. 
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Figure 5. Comparison of numerical (black = PB, blue 
= GC) and analytical (red) electric potentials for a 1:1 
electrolyte at bulk concentration of 0.01 M and ψE  = 
+1V. 

Figure 6 compares the Debye length with the 
EDL width ( EDLL  ) computed from the PB and 

the GC solutions according to the bulk 
concentration of a KCl electrolyte, for the 
applied voltage +0.1V. As expected, the Debye 
length underestimates the EDL width and the 
error committed when using (11) is quite 
important. It increases with the bulk 
concentration. 
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Figure 6. The EDL width EDLL  according to the bulk 

concentration for KCl, at +0.1V:  from GC solution 
(blue), PB solution (black) and Debye length formula 
(11) (red). 

 
3.2 Limitations of the PB equation validity 
 

One could expect that the PB equation (and 
the GC equation for binary symmetric 
electrolytes), when fully solved in the non linear 
regime (ψ > ψT), would give a good estimation 
of the EDL. However, even at large applied 
potentials, the PB and the CG equations have 
limited applicability. 
One of the assumptions made in the PB equation 
is that ions are pointlike charges. This means that 
the ions are considered to have no size. The 
consequence is that the PB equation can predict 
an infinite concentration of counter-ions near the 
charged surface, which is not realistic. For 
example, for the aqueous electrolyte (Na+, Cl-), 
at a bulk concentration of 1 mM, ambient 
temperature and ψE = +1V, the surface charge 
calculated from expression (6) corresponds to a 
concentration of spherical counter-ions (Cl-) of 5 
1040 ions/m3 hence 8.3 1016 M! This would mean 
that the chloride ion radius is 1.5 10-14m which is 
10 000 times smaller than the real value. Here 
we use the numerical PB model to determine the 
area in which the PB equation is valid, the limit 
being given by the steric effect which 
corresponds to a maximum concentration 
reached at the charged surface due to the 
hydrated ion crowding.  
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 Na+ K+ Mg2+ Cl- SO4
2- 

hydrodynamic 
radius (nm) 

[9] 

0.184 0.125 0.444 0.121 0.230 

maximum 
concentration 
(ions/m3) for 
a face centred 
cubic packing 

[10] 

 
2.85 
1028 

 
9.01 
1028 

 
2.72 
1027 

 
1.008 
1029 

 
1.45 
1028 

maximum 
concentration 

(M) ) for a 
face centred 

cubic packing 

 
47.3 

 
150 

 
4.53 

 
167 

 
24 

maximum 
concentration 
(M) for Kilic 
MPB model 

[3] 

 
33.33 

 
106.31 

 
1.42 

 
117.2 

 
17.07 

Table 1.  Examples of hydrodynamic radius and 
maximum concentration representing the steric limit 
for several ions. 

In Table 1, the steric limit is estimated from the 
face centred cubic sphere packing model [10] for 
which the packing density is 0.74 and from the 
Kilic model [3] where each ion of diameter a is 
supposed to occupy a volume equals to a3. 
Using the steric limit values of Table 1 (for the 
face centred cubic model), Figure 7 reports the 
PB equation validity domains in terms of the 
applied voltage ψE  and the bulk concentration 
fora KCl and MgCl2. These calculations show 
that the PB validity domain beyond the linear 
approximation is restricted to voltages of several 
hundreds of mV. 
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Figure 7.  Validity domains of the PB equation for 
KCl and MgCl2 electrolytes. 

 
 

 3.3 The Modified Poisson-Boltzmann (MPB) 
equation  
 

Recently, an equation taking into account the 
steric effects of the ions has been proposed by 
Kilic et al [3]. It is called the Modified Poisson-
Boltzmann (MPB) equation. 

In the MPB equation, the Boltzmann 
distribution part of the PB equation is modified. 
The modified Boltzmann distribution is given by 
the following expression: 






 ψν+
=

ψ
−∞

kT2
ez

sinh21

ec
c

i2

kT

ez

i
i

i

     

(13)

  
where ν  is the packing parameter such as 

∞= ca32ν and a is the effective ion size. We 

consider here a as the diameter of the hydrated 
ion, see Table 1. 
For a binary symmetric z:z electrolyte, the MPB 
equation can be written as follows [3]: 

( )





 ψν+






 ψ

−=ψ∇ε−∇ ∞

kT2
ez

sinh21

kT2
ez

sinh2
cez.

i2

i

rr
(14) 

The MPB equation (14) can be generalized to 
non symmetric electrolytes by combining (13) 
with (4). 
In Figure 8, formula (13) is plotted versus the 
applied voltage ψE and compared to the PB 
distribution (1). The PB distribution predicts a 
continuous increase of the concentration of the 
ions at the surface with the surface potential. 
With the MPB distribution, the concentration of 
each ion saturates and cannot exceed the steric 
limit given by a-3. 
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Figure 8. Comparison of the surface concentration (% 
of the maximum concentration given by the steric 
limit) for the PB distribution (blue) and the MPB 
distribution (red) according to the positive applied 
voltage. The  anion is Cl- and its bulk concentration is 
0.01M. 
On Figure 9, the MPB equation has been solved 
for quasi-linear conditions (+0.1V, 0.01M for 
KCl): as expected, the MPB solution and the PB 
solution are identical. 
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Figure 9. Validation of the MPB equation on a quasi-
linear case (KCl electrolyte, +0.1V, 0.01 M) by 
comparison with PB and GC solutions. 

For higher voltages (+1V, see Figure 10), the 
MPB and PB solutions do not overlap anymore 
because the PB equation validity fails. The MPB 
equation predicts an EDL width much bigger (~ 
0.2 nm) than the one given by the PB solution 
(<< 0.01 nm). The crowding effect at the charged 
surface repels the counterions into the diffuse 
layer and provides a much larger EDL width 
than what the PB equation is predicting.  

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z (nm)

P
S

I (
V

)

1V, Cl− 0.01M

PB

MPB

GC

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z (nm)

P
S

I (
V

)

1V, Cl− 0.01M

PB

MPB

GC

 

Figure 10. PB, MPB and GC solutions for a KCl 
electrolyte of bulk concentration 0.01M and a high 
surface potential (+1V). The lower figure is a zoom of 
the upper one near the charged surface. 

Next figure plots the chloride concentration 
profile corresponding to the previous potential 
profile: near the charged surface, the curve 
clearly shows that the MPB model limits the 
concentration to its maximum value (117 M for 
Cl-, see Table 1): 
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Figure 11. The Cl- concentration profile given by the 
MPB equation for a KCl electrolyte of bulk 
concentration 0.01M and a high applied surface 
potential (+1V). 

3.4 Getting convergence during the PB and 
the MPB equation computation 

The previous numerical results show that the 
higher the electrode potential ψE is, the higher 
the non linearity of the problem is. To obtain a 
good convergence of the solution, several ‘tricks’ 
are used.  First, the mesh is highly refined near 
the electrode surface where gradients are very 
steep. The one dimensional character of the 
solution allows the use of quadrilateral elements 
with low quality: the ‘mapped’ mesh has the 
advantage to reduce drastically the total number 
of Finite Elements and so the solution time and 
the memory requirements. Second, previous 
solutions obtained from the GC solution and/or 

zoom 

zoom 
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with lower applied voltages were used as initial 
condition by selecting the ‘restart button’. 
 
4. Coupling the MPB equation with the 
Navier-Stokes equation for AC 
electroosmosis 
 

AC electroosmosis is the fluid flow induced 
above a charged surface by the drift of the EDL 
mobile charges by the electric field. The 
convection of the free charges in the EDL can be 
neglected in comparison with their drift [11] 
leading to a weak coupling between the electrical 
stress and the fluid flow. 

In most papers which deal with ac 
electroosmosis modeling, the thin double layer 
approximation under the linear regime is used for 
the EDL [4]-[6]. The EDL is estimated from the 
Debye-Hückel theory and is not included inside 
the computation domain. The electric field inside 
the bulk is computed with the ac electrokinetic 
equation (see (16)) connected to the EDL thru a 
Neumman boundary condition (18). The fluid 
motion is obtained from the Navier-Stokes 
equation (20) where the electrical stress acts as a 
slip velocity imposed as a boundary condition on 
the electrode surface. This slip velocity is 
estimated from empirical parameters (the 
capacitance of the compact and the diffuse 
layers) and the tangential component of the 
electric field given by (16). 

Our goal here is to take off these empirical 
parameters from the numerical model. This 
supposes that the EDL is fully represented inside 
the computation domain for the fluid motion. 
The electrical volume force acting inside the 
EDL on the fluid is not transformed into a slip 
velocity. The numerical difficulty here is the 
multiscale coupling that has to be performed: the 
EDL, which is tens of nm wide, has to be 
included in a microsystem which size reaches 1 
mm. 

 
4.1 Ac electroomosis equations 

 
In our numerical model, we use the MPB 

equation to estimate more precisely the EDL 
features: the EDL width for the electric field 
calculation inside the bulk and the free charge 
density for the velocity field.  
The EDL is assumed to be a capacitance per unit 
area EDLC  (C/m2) such that: 

EDL

EDL L
C

ε=            (15) 

where EDLL   is the EDL width computed from 

the MPB equation (14). 
Under AC voltages of angular frequency ω, the 
electric field inside the bulk (i.e. outside the 
EDL) is given by the ac complex electrokinetic 
equation for real dielectrics [11]-[12]: 

( )( ) ( )*** V.Vi. ∇σ−∇=∇ωε+σ−∇
rrrr

  (16) 

where σ is the bulk conductivity (S/m) , V* the 
complex electrical potential of real part Re(V*) 
= V and σ* the complex conductivity. 
On insulated surfaces in contact with the 
electrolyte, the boundary condition associated to 
(16) is of Neumann homogeneous type: 

0
n

V
Re

*
* =









∂
∂σ−         (17) 

with n being the outer normal. 
Above the charged electrodes, which are 
assumed perfectly polarizable (no 
electrochemical reactions), the bulk is in contact 
with the EDL. Equation (16) is connected to the 
MPB equation at this interface where the 
conservation of the normal current density  
gives: 

EDLEDL

*
* Ci

n

V
Re ψ∆ω=









∂
∂σ−     (18) 

where EDLψ∆  is the potential drop across the 

EDL: 

VEEDL −ψ=ψ∆           (19) 

and EDLC  is given by (15). 

The time-averaged fluid flow is obtained from 
the Navier-Stokes equation where effects from 
the Joule heating are supposed to be negligible: 

( ) Em
2 Fv.vvp

rrrrrr
=∇ρ+∇η−∇     (20) 

mρ  is the mass density of the fluid (1000 kg/m3 

for water) and η is its dynamic viscosity (10-3 
kg/m/s for water). Because Reynolds numbers 
are very low in microsystems [12], the inertia 
term is generally very low in (20). 
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EF
r

 is the time-averaged electrical force due to 

the interaction of the ac electric field  with the 
free charges of the EDL. Under the assumption 
that the fluid permittivity is uniform (which is 
not generally the case for high voltages [7]): 

)ERe(q
2

1
F *

E

rr
=         (21) 

where q is the free charge density inside the EDL 
defined by (3) and computed from the source 
term of the MPB equation (14). As the MPB 
equation involves only the diffuse layer of the 
EDL, the boundary above the electrodes for 
equation (20) represents the interface between 
the compact layer and the diffuse layer: the 
boundary condition of type ‘slip/symmetry’, 
which is equivalent to the nonpermeability 
condition, is used at this interface (see figure 12): 

0n.v =
rr

            (22) 

This condition is also used on other boundaries 
because the vertical ones are symmetry planes 
and the upper one is supposed to be a free 
surface. 
 
4.2 Numerical settings 
 

The 2D interdigitated electrode microsystem 
studied by Green and al. [4] is considered here: 
the electrode width is 500 µm for a gap of 25 
µm. The electrolyte thickness above the 
electrode plane is about 1 mm. The electrolyte is 
a KCl solution of conductivity 2.1 mS/m 
(electrolyte A): as the authors don’t specify the 
corresponding bulk concentration, we use the 
Kohlraush’s law to estimate it [9]: 1.4 10-4 M. 

The diagram of Figure 12 summarizes the 
way couplings between equations are done in our 
AC electroosmosis model: the MPB equation 
(blue) is solved on a 1D geometry, the EDL 
width EDLL  is computed from the 1D potential 

by using an integration coupling variable:  it is 
used in formula (18) for the boundary condition 
above electrodes of the AC complex 
electrokinetic equation (green).  

The free charge density (source term of (14)) 
is extruded from the 1D geometry into the 2D 
geometry for the solving of the Navier-Stokes 
equation (red).   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Equations coupling for the AC 
electroosmosis model.  The electrodes shown as 
black hashed areas do not take part of the domain 
computation. 

4.3 Numerical results 
 

The following figures give examples of 
numerical results obtained with the AC 
electroosmosis model described in this paper, for 
the case ψE = ±0.1V. 
On Figure 13, the electric field and the potential 
is represented according to the frequency. By 
looking at the maximum value of the potential, 
we can see that, for 100 Hz, not all the maximum 
potential inside the bulk is only 0.04V compared 
to the electrode value which is 0.1V: a big part of 
the electrical potential drop occurs inside the 
EDL. On the contrary, the EDL does not 
influence anymore the potential distribution 
inside the bulk when frequency reaches 1 kHz. 
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Figure 13. Isopotentials (V) and electric field 
vectors inside the bulk for ψE = ±0.1V, 100 Hz 
(upper) and 1 kHz (lower). 

The next Figure shows the corresponding 
velocity field (white) and its magnitude 
(isovalues) for the 2 frequencies. Maximum 
velocity is reached at the electrode surface (red 
areas), near the gap. The fluid flow distribution 
is varying with frequency but seems in good 
agreement with the Green’s observations [4]. 
 

 

 

 
 

Figure 14.  Velocity magnitude (m/s) and 
velocity vectors inside the bulk for ψE = ±0.1V, 
100 Hz (upper) and 1 kHz (lower). 

The maximum velocity values obtained for these 
two configurations (0.013 m/s at 100 Hz and 
0.032 m/s at 1 kHz) seem to be very high when 
comparing them to Green’s measurements [4] 
(about hundreds of µm/s). This is maybe due to 
the boundary condition type we selected for the 
computation of the fluid motion (slip condition). 
Obviously, a no slip condition should diminish 
the maximum velocity (0.0027 m/s at 1 kHz), as 
shown by the following figure: 

 
 

Figure 15. Velocity field when using a no slip 
boundary condition at the interface between the 
diffuse layer and the compact layer (1 kHz). 
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5. Conclusions 
 

In this paper, we propose a numerical model 
implemented into Comsol Multiphysics for the 
modeling of the ac electroomosis phenomena. In 
this model, no empirical parameters are 
necessary to compute the velocity field. 
The analytical validation of PB equation and its 
comparison with the MPB equation proposed by 
Kilic et al. [3] at low voltages show that Comsol 
Multiphysics algorithms easily handle the 
highly nonlinear aspect of these equations. The 
weak coupling between the 1D MPB equation 
with the 2D complex AC electrokinetic and the 
Navier-Stokes equations has been computed on 
the interdigitated electrodes microsystem studied 
by Green [4]. The first numerical results seem to 
be in a good agreement with Green’s results. 
Navier-Stokes convergence could be improved 
by using a nonprimitive set of variables (stream 
function and vorticity) instead of the velocity and 
the pressure [13]. A more detailed analysis of the 
Green’s interdigitated electrodes microsystem 
must be continued to fully validate the model. 

. 
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