2-D ion transport modelling of water desalination by reverse osmosis (RO) considering the real membrane effect

Fernan Martinez
Bastiaan Blankert Valentina-Elena Musteață
Cristian Picioreanu

Water Desalination and Reuse Center

Compute $\mathbf{N a}^{+}$and Cl^{-}transport through the active layer with real 2-D geometry

Model implementation. Transport of water: creeping flow

Domain selection: all domains
4迷 Creeping Flow (spf)
D. Feed and permeate propertiesInitial Values 1Wall 1
4
Porous Medium
D. Fluid
D. Porous MembraneInlet pressure feedOutlet pressure permeatePeriodic Flow Condition

- Dependent Variables

Velocity field:
Velocity field components:

Pressure:

Domain selection: feed and permeate domain
\triangle *
Flow (spf)
D. Feed and permeate propertiesInitial Values 1Wall 1
4
Porous Medium
D. Fluid

D Porous MembraneInlet pressure feedOutlet pressure permeatePeriodic Flow Condition

Boundary selection: all boundaries were overridden
Porous Membrane
Inlet pressure feedOutlet pressure permeate
Periodic Flow Condition
Δ 迷 Creeping Flow (spf)
${ }^{\text {D }}$ Feed and permeate propertiesInitial Values 1Wall 1
Porous Medium
Overridden by

Model implementation. Transport of water: creeping flow

Domain selection: membrane
Δ 类 Creeping Flow (spf)
${ }^{\text {D }}$ Feed and permeate propertiesInitial Values 1Wall 1
4
Porous Medium

D. Porous Membrane

Inlet pressure feedOutlet pressure permeate
Periodic Flow Condition

Matrix Properties
Porosity:
ϵ_{p} User defined
epse $=0.05$
Permeability model:
Permeability Permeability: K User definedKperm_mem $=5.344 \mathrm{E}-22$ Isotropic

Model implementation. Transport of water: creeping flow

Boundaries selection: external boundaries
4类 Creeping Flow (spf)
${ }^{\text {D }}$ Feed and permeate propertiesInitial Values 1Wall 1
4
Porous Medium
D. Fluid

D Porous MembraneInlet pressure feedOutlet pressure permeatePeriodic Flow Condition

4橰 Tertiary Current Distribution, Nernst-Planck (tcd)
${ }^{\text {D }}$ Species Charges
\square Electrolyte Liquid (Feed and Permeate)No FluxInsulationInitial Values MembraneInitial Values FeedInitial Values Permeate
© Ion Exchange Membrane
$\frac{\partial u}{\partial \tau^{2}}=f$ Equation ViewConcentration feedOnly convection on permatePeriodic ConditionElectrolyte Current FeedElectrolyte Current PermeateElectrolyte Potential in one point

Domain selection: all domains

- Dependent Variables

Transport of species: tertiary current distribution, Nernst-Plank

4橉 Tertiary Current Distribution, Nernst-Planck (tcd)
D. Species Charges

D Electrolyte Liquid (Feed and Permeate)No FluxInsulationInitial Values MembraneInitial Values FeedInitial Values Permeate
© Ion Exchange Membrane $\frac{\partial U}{\partial t^{t}}=f$ Equation ViewConcentration feedOnly convection on permatePeriodic ConditionElectrolyte Current FeedElectrolyte Current PermeateElectrolyte Potential in one point

Domain selection: all domains

Transport of species: tertiary current distribution, Nernst-Plank

遴 Tertiary Current Distribution, Nernst-Planck (tcd)
D Species Charges
D Electrolyte Liquid (Feed and Permeate)No FluxInsulationInitial Values MembraneInitial Values FeedInitial Values Permeate

- Ion Exchange Membrane
$\frac{\partial u^{-f}}{\partial t^{f}}$ Equation ViewConcentration feedOnly convection on permatePeriodic ConditionElectrolyte Current FeedElectrolyte Current PermeateElectrolyte Potential in one point

Domain selection: feed and permeate

Transport of species: tertiary current distribution, Nernst-Plank

4橉 Tertiary Current Distribution, Nernst-Planck (tcd)
D Species Charges
\square ㄹ. Electrolyte Liquid (Feed and Permeate)No FluxInsulationInitial Values MembraneInitial Values FeedInitial Values Permeate

- Ion Exchange Membrane $\frac{\partial U}{\partial t^{t}}=f$ Equation ViewConcentration feedOnly convection on permatePeriodic ConditionElectrolyte Current FeedElectrolyte Current PermeateElectrolyte Potential in one point

Boundaries selection: only lateral

- Equation

Show equation assuming
Study 1: Flow and Solutes 2D, Statior
$-\mathbf{n} \cdot\left(\mathbf{J}_{i}+\mathbf{u} \boldsymbol{c}_{i}\right)=\mathbf{0}$

- Convection
\checkmark Include

Transport of species: tertiary current distribution, Nernst-Plank

遴 Tertiary Current Distribution, Nernst-Planck (tcd)
D Species Charges
\square 을 Electrolyte Liquid (Feed and Permeate)No FluxInsulationInitial Values MembraneInitial Values FeedInitial Values Permeate
A Ion Exchange Membrane $\frac{\partial U}{\partial t^{t}}=f$ Equation ViewConcentration feedOnly convection on permatePeriodic ConditionElectrolyte Current FeedElectrolyte Current PermeateElectrolyte Potential in one point

Boundaries selection: external boundaries

Transport of species: tertiary current distribution, Nernst-Plank

遴 Tertiary Current Distribution, Nernst-Planck (tcd)
D. Species Charges
\square Electrolyte Liquid (Feed and Permeate)No FluxInsulationInitial Values MembraneInitial Values FeedInitial Values Permeate
Ion Exchange Membrane
$\frac{\partial u}{\partial \tau^{2}}=f$ Equation ViewConcentration feedOnly convection on permatePeriodic ConditionElectrolyte Current FeedElectrolyte Current PermeateElectrolyte Potential in one point

Domain selection: all domains
Imposed values on each domain

Transport of species: tertiary current distribution, Nernst-Plank

4橉 Tertiary Current Distribution, Nernst-Planck (tcd)
D Species Charges
\square Electrolyte Liquid (Feed and Permeate)No FluxInsulationInitial Values MembraneInitial Values FeedInitial Values Permeate
ค Ion Exchange Membrane

$$
\frac{\partial u}{\partial \tau^{-f}} \text { Equation View }
$$Concentration feedOnly convection on permatePeriodic ConditionElectrolyte Current FeedElectrolyte Current PermeateElectrolyte Potential in one point

Domain selection: membrane

Transport of species: tertiary current distribution, Nernst-Plank

遴 Tertiary Current Distribution, Nernst-Planck (tcd)
D. Species Charges
$\triangleright \mathrm{D}$ Electrolyte Liquid (Feed and Permeate)No FluxInsulationInitial Values MembraneInitial Values FeedInitial Values Permeate
Ion Exchange Membrane $\frac{\partial u}{\partial t^{2}}$ ff Equation ViewConcentration feedOnly convection on permatePeriodic ConditionElectrolyte Current FeedElectrolyte Current PermeateElectrolyte Potential in one point

Constraint on the interface (boundary) feed/active layer

- Concentration on the boundary (feed/active layer)

Transport of species: tertiary current distribution, Nernst-Plank

4遴 Tertiary Current Distribution, Nernst-Planck (tcd)Species Charges
\square Electrolyte Liquid (Feed and Permeate)No FluxInsulationInitial Values MembraneInitial Values FeedInitial Values Permeate
© Ion Exchange Membrane $\frac{\partial U}{\partial t^{t}}=f$ Equation ViewConcentration feedOnly convection on permatePeriodic ConditionElectrolyte Current FeedElectrolyte Current PermeateElectrolyte Potential in one point

Boundary selection: inlet and outlet

[^0]
Transport of species: tertiary current distribution, Nernst-Plank

4遴 Tertiary Current Distribution, Nernst-Planck (tcd)
D Species Charges
\square 을 Electrolyte Liquid (Feed and Permeate)No FluxInsulationInitial Values MembraneInitial Values FeedInitial Values Permeate

- Ion Exchange Membrane
$\frac{\partial u}{\partial \tau^{2}}=f$ Equation ViewConcentration feedOnly convection on permatePeriodic ConditionElectrolyte Current FeedElectrolyte Current PermeateElectrolyte Potential in one point

Boundary selection: only lateral

- Equation

Show equation assuming:
Study 1: Flow and Solutes 2D, Laminar Flow
$\phi_{\text {lsrc }}=\phi_{\text {ldst }}$
$c_{i, \mathrm{src}}=c_{i, \mathrm{dst}}$
$-\mathbf{n}_{\mathrm{src}} \cdot\left(\mathbf{J}_{i}+\mathbf{u} c_{i}\right)_{\mathrm{src}}=\mathbf{n}_{\mathrm{dst}} \cdot\left(\mathbf{J}_{i}+\mathbf{u} c_{i}\right)_{\mathrm{dst}}$

- Periodic Condition
\checkmark Apply for electrolyte phase
Potential difference:
$\phi_{l, \text { src }}-\phi_{l, \text { dst }} 0$
\square Apply for electrode phase

Transport of species: tertiary current distribution, Nernst-Plank

4遴 Tertiary Current Distribution, Nernst-Planck (tcd)Species Charges
\triangleright Electrolyte Liquid (Feed and Permeate)No FluxInsulationInitial Values MembraneInitial Values FeedInitial Values Permeate

- Ion Exchange Membrane
$\frac{\partial u}{\partial \tau^{2}}=f$ Equation ViewConcentration feedOnly convection on permatePeriodic ConditionElectrolyte Current FeedElectrolyte Current PermeateElectrolyte Potential in one point

Boundary selection: feed and permeate

- Equation	
Show equation assuming:	
Study 1: Flow and Solutes 2D, Laminar Flow	-
$-\int_{\partial \Omega} \mathbf{i}_{l} \cdot \mathbf{n d l}=i_{l, \text { average }} \int_{\partial \Omega} \mathrm{dl}$	
- Electrolyte Current	
Average current density	-
Inward electrolyte current density:	
i_{1},average 0	$\mathrm{A} / \mathrm{m}^{2}$
Boundary electrolyte potential initial value:	
$\phi_{l, \text { bnd, init }} 1 \mathrm{e}-6[\mathrm{~V}]$	V

2-D Model. Results - Fluxes in uncharged membrane (-0.01 mM)

2-D Model. Results - Fluxes in charged membrane (-200 mM)

There are ionic currents in the 2-D membrane

Two-dimensional model of ion transport in composite membranes active layers with TEM-scanned morphology

Fernan David Martinez-Jimenez ${ }^{\text {a, }}$, Valentina-Elena Musteata ${ }^{\mathrm{b}}$, Santiago Cespedes-Zuluaga ${ }^{\text {a }}$, Bastiaan Blankert ${ }^{\text {a }}$, Cristian Picioreanu ${ }^{\text {a }}$
a Environmental Science \& Engineering Program (EnSE), Biological and Environmental Science and Engineering Division (BESE) and Water Desalination and Reuse
Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
KAUST Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

HIGHLIGHTS

- A 2D solution-friction model reveals new effects of active layer on ion permeability.
- Ionic current loops may develop inside and around the active layer.
- Different transport mechanisms are - Different inant in different conditions.
- An equivalent 1D active layer thickness leads to the same permeability as in 2D.
- The equivalent thickness can be computed from images of the active layer.

GRAPHICALABSTRACT

1. The response of the 2-D model to variations in flux and salinity can be represented by a 1-D model using an appropriate equivalent membrane thickness.
2. We provided a method to compute the equivalent membrane thickness from images of membrane active layer.
3. The 2-D model revealed the possibility of circular ionic currents.

fernan.martinez@kaust.edu.sa

Scan the code to learn more about the workshop wdrc.conferences@kaust.edu.sa
fernan.martinez@kaust.edu.sa

- Fundamentals of membrane transport processes
- Theory and computer applications in COMSOL
- Experimental aspects of transport phenomena in membranes, from small-scale to system-level

Thank you

fernan.martinez@kaust.edu.sa

Article

PMP 6 ${ }^{\text {th }}$ conference

جامعة الملك عبدالله
للعلوم والتّقنية
King Abdullah University of
Science and Technology
Water Desalination and Reuse Center

SUPPLEMENTARY INFORMATION

fernan.martinez@kaust.edu.sa

Water Desalination and Reuse Center

Ideal 1D and equivalent active layer thickness L3, for all active layer geometries

Active layer	Geometry	Average 2D thickness $L_{i}, \mathbf{n m}$	Relative standard deviation of $L_{1}, \sigma / L_{1}$	Reference 1D thickness $L_{B}, \mathbf{n m}$	Reference 1D thickness $L_{A}, \mathbf{n m}$	Equivalent thickness $L_{3}, \mathbf{n m}$
matyruedty	a	181	0.29	149	154	149
Finetexits	b	175	0.35	125	130	131
pownomenery	c	160	0.27	128	132	128
-2aneratio	d	270	0.27	224	231	220
2mepremuta	e	198	0.23	165	170	165
$2 \operatorname{sar}+2$	f	250	0.38	177	183	178
5 Matand	g	221	0.51	129	133	129
Sef:	h	324	0.40	239	247	239
memeners	i	214	0.34	179	185	180

Feed and permeate:

$$
\begin{gathered}
\nabla \cdot\left(-D_{i} \nabla c_{i}-\frac{z_{i} D_{i} F}{R T} c_{i} \nabla \varphi+\mathbf{u} c_{i}\right)=0 \\
\mathbf{J}_{i}=-D_{i} \nabla c_{i}-\frac{z_{i} D_{i} F}{R T} c_{i} \nabla \varphi+\mathbf{u} c_{i} \\
\mathbf{i}=F \sum_{i} z_{i} \mathbf{J}_{i} \\
\sum_{i} z_{i} c_{i}=0
\end{gathered}
$$

Membrane:

$$
\begin{gathered}
\nabla \cdot\left(-D_{i, e f f} \nabla c_{i}-\frac{z_{i} D_{i, e f f} F}{R T} c_{i} \nabla \varphi+K_{f} \mathbf{u} c_{i}\right)=0 \\
\mathbf{J}_{i}=-D_{i, e f f} \nabla c_{i}-\frac{z_{i} D_{i, e f f} F}{R T} c_{i} \nabla \varphi+K_{f} \mathbf{u} c \\
\mathbf{i}=F \sum_{i} z_{i} \mathbf{J}_{i} \\
z_{M} c_{M}+\sum_{i} z_{i} c_{i}=0
\end{gathered}
$$

Brinkman

$$
\begin{aligned}
& \overbrace{\frac{1}{\varepsilon^{2}} \rho(\mathbf{u} \cdot \nabla) \mathbf{u}=-}^{\text {Inertial force }} \underbrace{\nabla p}_{\text {Pressure force }}+\overbrace{\frac{\mu}{\varepsilon} \nabla^{2} \mathbf{u}}^{\text {Viscous force }}-\underbrace{\frac{\mu}{\kappa} \mathbf{u}}_{\text {Darcy force }}+\overbrace{R T \sum_{i} \frac{c_{i}}{D_{i}}\left(\mathbf{u}_{i}-\mathbf{u}\right)}^{\text {Electroosmotic force }} \\
& \quad \frac{1}{\varepsilon^{2}} \rho(\mathbf{u} \cdot \nabla) \mathbf{u}=-\nabla p+\frac{\mu}{\varepsilon} \nabla^{2} \mathbf{u}-\frac{\mu}{\kappa} \mathbf{u}+R T \sum_{i} \frac{c_{i}}{D_{i}}\left(\mathbf{u}_{i}-\mathbf{u}\right)
\end{aligned}
$$

Comparison between the magnitudes of forces affecting water permeation through the active layer:

2-D Model. Water transports in the membrane. SD or SF?

SD model is equivalent to the Darcy equation when the osmotic pressure gradient is negligible

$$
\begin{aligned}
& \mathbf{u}=-\frac{\kappa}{\mu} \nabla p \Rightarrow J_{W} \square \frac{d p}{d x} \\
& J_{W}=A\left(\Delta p-\sigma \prod\right) \Rightarrow J_{W} \square \frac{d p}{d x} \\
& \begin{array}{c}
\text { strong water/membrane } \\
\text { partitioning }
\end{array}
\end{aligned}
$$

Figure SI 4

Δ 迷 Creeping Flow (spf)
D. Feed and permeate properties
D. Initial Values 1Wall 1
4
Porous Medium
D. Fluid

D Porous Membrane
Inlet pressure feedOutlet pressure permeate
Periodic Flow Condition

Domain selection: all domains
Imposed values on each domain

[^0]: - Equation

 Show equation assuming:
 Study 1: Flow and Solutes 2D, Stationary soll •
 $c_{i}=c_{0, i}$.

 - Concentration
 - Species c_cl
 $c_{0, c_{-} \mathrm{cl}}^{\mathrm{cf}} \mathrm{cl}=500 \mathrm{~mol} / \mathrm{m}^{3}$

