2-D ion transport modelling of water desalination by reverse osmosis (RO) considering the real membrane effect

Fernan Martinez

Bastiaan Blankert Valentina-Elena Musteață Cristian Picioreanu

Water Desalination and Reuse Center

fernan.martinez@kaust.edu.sa

active layer with real 2-D geometry

Geometry

Geometry

Model description. Transport of water: creeping flow

- Creeping Flow (spf)
 Feed and permeate properties
 Initial Values 1
 Wall 1
 Porous Medium
 Fluid
 Porous Membrane
 Inlet pressure feed
 Outlet pressure permeate
 - Periodic Flow Condition

Domain selection: all domains

 Dependent Variables 	
Velocity field:	u
Velocity field components:	u
	v
Pressure:	р

- Creeping Flow (spf)
 Feed and permeate properties
 Initial Values 1
 Wall 1
 Porous Medium
 Fluid
 Porous Membrane
 Inlet pressure feed
 Outlet pressure permeate
 - Periodic Flow Condition

Domain selection: feed and permeate domain

•	Fluid Properties					
Den	sity:					
ρ	User defined					
	rho = 997	kg/m ³				
Constitutive relation						
S	pecify dynamic viscosity	•				
μ	User defined	•				
	mu = 8.016E-4	Pa∙s				

Boundary selection: all boundaries were overridden

Domain selection: membrane

• 1	Matrix Properties	
Poro	sity:	
ϵ_{p}	User defined	•
	epse = 0.05	1
Perm	neability model:	
Pe	rmeability	•
Perm	neability:	
κ	User defined	•
	Kperm_mem = 5.344E-22	m²
	Isotropic	•

Boundaries selection: external boundaries

 Boundary Condition 	
S Pressure	•
 Pressure Conditions 	
Pressure:	
Static	•
Static F Po p_feed = 2E6	▼ Pa
Static F Po p_feed = 2E6 ✓ Suppress backflow	▼ Pa
Static F Po p_feed = 2E6 Suppress backflow Flow direction:	▼ Paı

Model description. Transport of species: tertiary current distribution, Nernst-Plank

Model implementation. Transport of species: tertiary current distribution, Nernst-Plank

- If Tertiary Current Distribution, Nernst-Planck (tcd)
 - Species Charges
 - Electrolyte Liquid (Feed and Permeate)
 - 는 No Flux
 - 는 Insulation
 - lnitial Values Membrane
 - 🔵 Initial Values Feed
 - Initial Values Permeate
 - 🔺 🖙 Ion Exchange Membrane
 - #f Equation View
 - Concentration feed
 - Only convection on permate
 - Periodic Condition
 - Electrolyte Current Feed
 - Electrolyte Current Permeate
 - 👄 Electrolyte Potential in one point

Domain selection: all domains

▶ Dependent Variables
 Number of species:
 Concentrations:
 C_cl
 C_na
 + =
 Electrolyte potential:
 V
 Electric potential:
 dummy

Itertiary Current Distribution, Nernst-Planck (tcd)

Species Charges

- Electrolyte Liquid (Feed and Permeate)
 - 는 No Flux
 - 는 Insulation
 - lnitial Values Membrane
 - 🔵 Initial Values Feed
 - Initial Values Permeate
- 🔺 🖙 Ion Exchange Membrane
 - #f Equation View
 - Concentration feed
 - Only convection on permate
 - Periodic Condition
 - 😑 Electrolyte Current Feed
 - ─ Electrolyte Current Permeate
 - 👄 Electrolyte Potential in one point

Domain selection: all domains

- If Tertiary Current Distribution, Nernst-Planck (tcd)
 - Species Charges
 - Electrolyte Liquid (Feed and Permeate)
 - 는 No Flux
 - 는 Insulation
 - lnitial Values Membrane
 - 🔵 Initial Values Feed
 - Initial Values Permeate
 - 🔺 🖙 Ion Exchange Membrane
 - #f Equation View
 - Concentration feed
 - Only convection on permate
 - Periodic Condition
 - 😑 Electrolyte Current Feed
 - ─ Electrolyte Current Permeate
 - 👄 Electrolyte Potential in one point

Domain selection: feed and permeate

Diffusion

- Migration in Electric Field
- Mobility:
- Nernst-Einstein relation $u_{m,i} = \frac{D_i}{RT}$ • Convection
- Velocity field:
- u Velocity field (spf) ▼ 📑

- If Tertiary Current Distribution, Nernst-Planck (tcd)
 - Species Charges
 - Electrolyte Liquid (Feed and Permeate)
 - 는 No Flux
 - 는 Insulation
 - 는 Initial Values Membrane
 - 🔵 Initial Values Feed
 - Initial Values Permeate
 - 🔺 🖙 Ion Exchange Membrane
 - #f Equation View
 - Concentration feed
 - Only convection on permate
 - Periodic Condition
 - 😑 Electrolyte Current Feed
 - Electrolyte Current Permeate
 - 💭 Electrolyte Potential in one point

Boundaries selection: only lateral

- Equation
- Show equation assuming:
- Study 1: Flow and Solutes 2D, Statior 🔻
- $-\mathbf{n}\cdot\left(\mathbf{J}_{i}+\mathbf{u}c_{i}\right)=0$
- Convection
- 🖌 Include

Boundaries selection: external boundaries

- If Tertiary Current Distribution, Nernst-Planck (tcd)
 - Species Charges
 - Electrolyte Liquid (Feed and Permeate)
 - 는 No Flux
 - 는 Insulation
 - Initial Values Membrane
 - Initial Values Feed
 - Initial Values Permeate
 - Ion Exchange Membrane
 - #f Equation View
 - Concentration feed
 - Only convection on permate
 - Periodic Condition
 - 😑 Electrolyte Current Feed
 - ── Electrolyte Current Permeate
 - 💭 Electrolyte Potential in one point

Domain selection: all domains Imposed values on each domain

- If Tertiary Current Distribution, Nernst-Planck (tcd)
 - Species Charges
 - Electrolyte Liquid (Feed and Permeate)
 - 는 No Flux
 - 는 Insulation
 - lnitial Values Membrane
 - 🔵 Initial Values Feed
 - Initial Values Permeate
 - Ion Exchange Membrane
 - #f Equation View
 - Concentration feed
 - Only convection on permate
 - Periodic Condition
 - Electrolyte Current Feed
 - Electrolyte Current Permeate
 - 👄 Electrolyte Potential in one point

Domain selection: membrane

- If Tertiary Current Distribution, Nernst-Planck (tcd)
 - Species Charges
 - Electrolyte Liquid (Feed and Permeate)
 - 는 No Flux
 - 는 Insulation
 - lnitial Values Membrane
 - 🔵 Initial Values Feed
 - Initial Values Permeate
 - 🔺 🖙 Ion Exchange Membrane
 - Equation View
 - \bigcirc Concentration feed
 - Only convection on permate
 - Periodic Condition
 - 😑 Electrolyte Current Feed
 - ─ Electrolyte Current Permeate
 - 💭 Electrolyte Potential in one point

Constraint on the interface (boundary) feed/active layer

• Concentration on the boundary (feed/active layer)

$$up(\alpha \varphi(c_{i}) \exp\left(-\frac{z_{i}F}{RT}(\varphi_{M}-\varphi_{W})\right)\Big|_{up} - down(c_{i} \exp\left(\exp\left(\frac{z_{i}F}{RT}\left(\frac{z_{i}F}{\varphi_{M}}\left(\varphi_{W}\right)\right)\right)\Big|_{down}\right)\Big|_{down}\right)$$

- If Tertiary Current Distribution, Nernst-Planck (tcd)
 - Species Charges
 - Electrolyte Liquid (Feed and Permeate)
 - 는 No Flux
 - 는 Insulation
 - lnitial Values Membrane
 - 🔵 Initial Values Feed
 - Initial Values Permeate
 - 🔺 🖙 Ion Exchange Membrane
 - #f Equation View
 - Concentration feed
 - Only convection on permate
 - Periodic Condition
 - Electrolyte Current Feed
 - Electrolyte Current Permeate
 - 💭 Electrolyte Potential in one point

Boundary selection: inlet and outlet

Equation

Show equation assuming:

Study 1: Flow and Solutes 2D, Stationary solu 🔻

 $c_i = c_{0,i}$

Concentration

✓ Species c_cl

- If Tertiary Current Distribution, Nernst-Planck (tcd)
 - Species Charges
 - Electrolyte Liquid (Feed and Permeate)
 - 는 No Flux
 - 는 Insulation
 - lnitial Values Membrane
 - 🔵 Initial Values Feed
 - Initial Values Permeate
 - 🔺 🖙 Ion Exchange Membrane
 - #f Equation View
 - Concentration feed
 - Only convection on permate
 - Periodic Condition
 - 😑 Electrolyte Current Feed
 - Electrolyte Current Permeate
 - 💭 Electrolyte Potential in one point

Boundary selection: only lateral

- Equation
- Show equation assuming:
- Study 1: Flow and Solutes 2D, Laminar Flow 🔹
- $\phi_{
 m l_{src}} = \phi_{
 m l_{dst}}$
- $c_{i,
 m src} = c_{i,
 m dst}$
- $-\mathbf{n}_{\mathsf{src}} \cdot (\mathbf{J}_i + \mathbf{u}_i)_{\mathsf{src}} = \mathbf{n}_{\mathsf{dst}} \cdot (\mathbf{J}_i + \mathbf{u}_i)_{\mathsf{dst}}$
- Periodic Condition

Apply for electrolyte phase Potential difference:

- $\phi_{
 m l,src}$ $\phi_{
 m l,dst}$ 0
- Apply for electrode phase

- If Tertiary Current Distribution, Nernst-Planck (tcd)
 - Species Charges
 - Electrolyte Liquid (Feed and Permeate)
 - 는 No Flux
 - 는 Insulation
 - lnitial Values Membrane
 - 🔵 Initial Values Feed
 - Initial Values Permeate
 - 🔺 🖙 Ion Exchange Membrane
 - #f Equation View
 - Concentration feed
 - Only convection on permate
 - Periodic Condition
 - 😑 Electrolyte Current Feed
 - Electrolyte Current Permeate
 - 💭 Electrolyte Potential in one point

Boundary selection: feed and permeate

Equation

Show equation assuming:

Electrolyte Current

Solution strategy

2-D Model. Results - Fluxes in uncharged membrane (-0.01 mM)

2-D Model. Results - Fluxes in uncharged membrane (-0.01 mM)

2-D Model. Results - Fluxes in charged membrane (-200 mM)

2-D Model. Results - Fluxes in charged membrane (-200 mM)

2-D Model. Ionic current density

There are ionic currents in the 2-D membrane

Closed current circuits (insulation)

Contents lists available at ScienceDirect

Desalination

journal homepage: www.elsevier.com/locate/desal

Two-dimensional model of ion transport in composite membranes active layers with TEM-scanned morphology

Fernan David Martinez-Jimenez^{a,*}, Valentina-Elena Musteata^b, Santiago Cespedes-Zuluaga^a, Bastiaan Blankert^a, Cristian Picioreanu^a

^a Environmental Science & Engineering Program (EnSE), Biological and Environmental Science and Engineering Division (BESE) and Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia ^b KAUST Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

HIGHLIGHTS

G R A P H I C A L A B S T R A C T

- A 2D solution-friction model reveals new effects of active layer on ion permeability.
- Ionic current loops may develop inside and around the active layer.
- Different transport mechanisms are dominant in different conditions.
- An equivalent 1D active layer thickness leads to the same permeability as in 2D.
- The equivalent thickness can be computed from images of the active layer.

Key messages

- **1.** The response of the 2-D model to variations in flux and salinity can be represented by a 1-D model using an appropriate *equivalent membrane thickness*.
- **2.** We provided a method to compute the *equivalent membrane thickness* from images of membrane active layer.
- **3.** The 2-D model revealed *the possibility of circular ionic currents*.

fernan.martinez@kaust.edu.sa

6TH PHYSICS OF MEMBRANE PROCESSES WORKSHOP

November 13 - 16 , 2023 King Abdullah University of Science and Technology (KAUST), Saudi Arabia

Scan the code to learn more about the workshop

wdrc.conferences@kaust.edu.sa

fernan.martinez@kaust.edu.sa

- Fundamentals of membrane transport processes
- Theory and computer applications in COMSOL
- Experimental aspects of transport phenomena in membranes, from small-scale to system-level

Thank you

fernan.martinez@kaust.edu.sa

Article

PMP 6th conference

Water Desalination and Reuse Center

SUPPLEMENTARY INFORMATION

fernan.martinez@kaust.edu.sa

Water Desalination and Reuse Center

Ideal 1D and equivalent active layer thickness L3, for all active layer geometries

	Geometry	Average	Relative	Reference	Reference	Fauivalant
Active layer		2D	standard	1 D	1 D	thicknoss
		thickness	deviation	thickness	thickness	thickness
		L_1 , nm	of L_1 , σ/L_1	L_B , nm	L_A , nm	<i>L</i> 3, nm
	a	181	0.29	149	154	149
Condentities	b	175	0.35	125	130	131
	c	160	0.27	128	132	128
	d	270	0.27	224	231	220
	e	198	0.23	165	170	165
M. M. Star	f	250	0.38	177	183	178
San Mind	g	221	0.51	129	133	129
	h	324	0.40	239	247	239
	i	214	0.34	179	185	180

Feed and permeate:

$$\nabla \cdot \left(-D_i \nabla c_i - \frac{z_i D_i F}{RT} c_i \nabla \varphi + \mathbf{u} c_i \right) = 0$$

$$\mathbf{J}_{i} = -D_{i}\nabla c_{i} \quad -\frac{z_{i}D_{i}F}{RT}c_{i}\nabla\varphi + \mathbf{u}c_{i}$$

$$\mathbf{i} = F \sum_{i} Z_{i} \mathbf{J}_{i}$$

$$\sum_{i} z_i c_i = 0$$

Membrane:

$$\nabla \cdot \left(-D_{i,eff} \nabla c_i - \frac{z_i D_{i,eff} F}{RT} c_i \nabla \varphi + K_f \mathbf{u} c_i \right) = 0$$

$$\mathbf{J}_{i} = -D_{i,eff} \nabla c_{i} - \frac{z_{i} D_{i,eff} F}{RT} c_{i} \nabla \varphi + K_{f} \mathbf{u} c$$

$$\mathbf{i} = F \sum_{i} Z_{i} \mathbf{J}_{i}$$

 $z_M c_M + \sum_i z_i c_i = 0$

Brinkman

$$\frac{1}{\varepsilon^2} \rho (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \frac{\mu}{\varepsilon} \nabla^2 \mathbf{u} - \frac{\mu}{\kappa} \mathbf{u} + RT \sum_i \frac{c_i}{D_i} (\mathbf{u}_i - \mathbf{u})$$

2-D Model. Ionic current density

Comparison between the magnitudes of forces affecting water permeation through the active layer:

العلام والتقنية للعلوم والتقنية العلوم والتقنية للعلوم والتقنية (المالي عبدالله (المالي عبداله (المالي مالي عبداله (المالي على (المالي على (المالي على المالي عبداله (المالي عبدالي ملي عبدالي (المالي عبدالي ملي عبدالي ملي عبدالي (المالي عبدالي ملي عبدالي ملي عبدالي (المالي على المالي عبدالي المالي (المالي عبدالي المالي عبدالي المالي (المالي عبدالي المالي المالي المالي (المالي المالي عبدالي المالي عبدالي (المالي عبدالي المالي المالي المالي (المالي عبدالي المالي المالي المالي (المالي المالي الممالي المالي المالي (المالي الماليمالي المالي المالي 2-D Model. Water transports in the membrane. SD or SF?

SD model is equivalent to the Darcy equation when the osmotic pressure gradient is negligible

Figure SI 4

Creeping Flow (spf)
 Feed and permeate properties
 Initial Values 1
 Wall 1
 Porous Medium
 Fluid
 Porous Membrane
 Inlet pressure feed
 Outlet pressure permeate
 Periodic Flow Condition

Domain selection: all domains Imposed values on each domain

