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Abstract 
A finite-element model of a baking plate pair used in an inductively heated wafer baking oven is derived and 

used for design optimization. Based on frequency-domain analyses of the electromagnetic field, the heat source 

generated by induced currents is approximated. This reduces the computational complexity by eliminating the 

need for coupled simulations. A nonlinear description of phase transformations in the batter, mainly the 

vaporization of water, is compared to a linearized approach. The antagonistic objectives of good temperature 

homogeneity and fast startup time of the oven lead to a tradeoff for the baking plate thickness. For a simple 

objective function, the optimal baking plate thickness is calculated explicitly by relations obtained from FEM 

simulations. 

Keywords: Process control, Induction heating, Optimal design, Parametric optimization. 

Introduction 
Baking is a central production step in the industrial 

production of edible wafers and waffles. The liquid 

batter is heated between a pair of metallic baking 

plates. Establishing a uniform and accurate 

temperature at the baking face (inner baking plate 

surface) is crucial for product quality. 

 

In traditional gas-fired ovens, the baking plates are 

heated by an array of gas burners. Recent 

developments aim at a technology transition to 

inductive heating ovens. Their main advantages are 

the absence of flue gas and increased efficiency [1]. 

However, the highly localized heat input into the 

baking plates and restrictions concerning the 

positions of inductors can lead to non-uniform 

temperature profiles in the baking plates and 

inhomogeneous product properties. 

 

A COMSOL multiphysics finite-element model 

(FEM) serves to identify crucial design parameters 

and develop strategies that ensure the desired 

product quality. The analyzed problem involves 

induction heating, phase changes, conductive, 

convective, and radiative heat transfer. A 

computationally less expensive model is derived 

and expressed via the Heat Transfer in Solids 

module to reduce the computational effort. The 2D 

simulation domain (𝑦𝑧-plane) represents a cross-

section of the baking plate, see Figure 1. 

Temperature uniformity is assumed along the 𝑥-

direction (normal to the cross-section, motion 

direction). Figure 1 shows the basic geometry of the 

baking plates and inductors. 

 

The baking plate pairs travel cyclically through the 

oven. At one position along this path, finished 

products are extracted and new batter is deposited. 

The cycle time of this process is 𝑡𝑐. 

 
Figure 1. Setup of the FEM simulation. The left part 

shows the physical setup used to determine the 

electromagnetic heat source. The right part shows the 

domain of the computational model in the 𝑦𝑧-plane. 

The paper’s main contribution is optimizing the 

baking plate thickness 𝐿𝑦 based on FEM 

simulations. An increased baking plate thickness is 

hypothesized to reduce temperature variations at the 

baking face, where the baking plates are in contact 

with the batter. However, thicker baking plates have 

higher thermal capacities and require longer to 

reach the desired operating temperature after start-

up from ambient temperature. 

Finite Element Model 
This section is organized in three parts: 1) geometry 

of the setup and heat equation, 2) characterization 

of inductive heat sources, and 3) models of the 

baking process. Three simulations are discussed in 

this work: A, a steady-state simulation using 

averaged quantities; B, a time dependent study with 

a nonlinear baking process model; C, a time-

dependent study with a linear baking process model. 

 

Heat equation 

The temperature is assumed to be homogeneous in 

the traveling direction of the baking plates (𝑥-

direction, 𝐿𝑥 is the baking plate length). Because 

the leading and trailing faces of the baking plates 

mainly exchange heat with the leading/trailing faces 

of other baking plates with similar temperatures, 
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gradients along this direction are expected to be 

negligible. The batter deposition is usually centered 

on the baking face, and the batter covers a 

significant fraction of this area. The distance 𝛿b 

between the lower and upper plate equals the batter 

thickness. 

 

The baking plate thickness is 𝐿𝑦, and the width is 

𝐿𝑧. For symmetry reasons, only 𝑧 ∈ [0, 𝐿𝑧/2] is 

considered in the computational model. Note that 

the 𝑦-dimension of the geometry setup is formed by 

two baking plate thicknesses 𝐿𝑦 and the gap width 

𝛿b. The heat equation for the 2-dimensional 

problem within the domains 𝐴𝑖 ∈ {𝐴Fe
± , 𝐴b} (see 

Figure 1) with material properties 𝜌 (mass density), 

𝑐p (specific heat capacity, possibly depending on 

𝑇), and 𝜆 (heat conductance) not explicitly 

depending on (𝑦, 𝑧) reads as 

𝜌𝑐p(𝑇)
𝜕𝑇

𝜕𝑡
(𝑦, 𝑧, 𝑡)                                                (1) 

= 𝜆(
𝜕2𝑇

𝜕𝑦2
(𝑦, 𝑧, 𝑡) +

𝜕2𝑇

𝜕𝑧2
(𝑦, 𝑧, 𝑡)) + 𝑄(𝑦, 𝑧, 𝑡) 

together with the initial condition 

𝑇(𝑦, 𝑧, 𝑡0) = 𝑇0(𝑦, 𝑧)   for   (𝑦, 𝑧) ∈ 𝐴𝑖 . (1a) 

The source term 𝑄(𝑦, 𝑧, 𝑡) is represents the 

inductive power and the necessary heat for the 

linear baking process model (simulations A and C). 

The appropriate boundary conditions on (𝑦, 𝑧) ∈
𝜕𝐴𝑖 are given by Neumann boundary conditions 

−𝑛𝑦𝜆
𝜕𝑇

𝜕𝑦
(𝑦, 𝑧, 𝑡) − 𝑛𝑧𝜆

𝜕𝑇

𝜕𝑧
(𝑦, 𝑧, 𝑡)            (1b) 

= 𝑞𝑛(𝑇, 𝑦, 𝑧, 𝑡),             
where 𝑛𝑦 and 𝑛𝑧 are the components of the unit 

normal surface vector and 𝑞𝑛 is the normal heat 

flux leaving the surface. At the symmetry axis (𝑧 =
0), 𝑞𝑛 = 0 follows. The same was assumed for the 

boundary between the batter and the air in the gap 

between the baking plates since the main heat 

transfer happens via the baking plates. 

 

The heat flows corresponding to the boundaries of 

the baking plate at 𝑦 = ± (𝐿𝑦 +
𝛿b

2
) and 𝑧 =

𝐿𝑧

2
 are 

based on the sum of radiative heat exchange and the 

lumped-parameter heat exchange coefficients 

identified in [2] from measurements at the 

industrial plant. Heat transfer between the lower 

and upper baking plate in the small section without 

batter was modeled by air-gap conductance and 

radiative heat exchange. 

 

A constant contact resistance models the contact 

between the batter and the baking plates. The value 

of the corresponding specific heat exchange 

coefficient mainly affects the duration during of 

liquid water in the batter domain, i.e. its 

temperature is at 100 °C. This specific heat transfer 

coefficient was chosen such that this duration 

(transient simulation C, nonlinear 𝑐p(𝑇)) 

approximately meets the operator-observed 

vaporization duration 𝑡b of the “hissing phase” [1]. 

 
Figure 2. Shape functions 𝑓𝑦 and 𝑓𝑧 in normalized form. 

𝐿𝑖𝑛𝑑,𝑧 is the inductor width and 𝛿𝐸 is the penetration 

depth of the electromagnetic field. Note that the 

normalization constants have very different orders of 

magnitude (𝛿𝐸 ≪
𝐿𝑖𝑛𝑑,𝑧

2
). 

A constant specific heat capacity 𝑐p was used for 

the baking plates. The material properties 𝜌 and 𝜆 

of the baking plates were taken from typical values 

of cast gray iron [3]. 

 

Inductive Heat Sources 

The spatial distribution of the inductive heating 

power has been obtained based on electromagnetic 

simulations and theoretical considerations. In order 

to keep the computational effort low, this identified 

spatial distribution was used instead of repeated 

electromagnetic FEM simulations. The inductive 

heating power is thus represented by a volumetric 

heat source 

𝑄(𝑦, 𝑧, 𝑡) = 𝑃+(𝑡)
1

𝐿+

𝑓𝑦 (𝐿𝑦 +
𝛿b

2
− 𝑦) 𝑓𝑧(𝑧)  

within 𝐴Fe
+  and 

𝑄(𝑦, 𝑧, 𝑡) = 𝑃−(𝑡)
1

𝐿−

𝑓𝑦 (𝐿𝑦 +
𝛿b

2
+ 𝑦) 𝑓𝑧(𝑧 − 𝑧ind

− ) 

within 𝐴Fe
− . 𝑃+(𝑡) (𝑃−(𝑡)) is the momentary power 

of the inductor heating the upper (lower) baking 

plate, and 1/𝐿+ (1/𝐿−) is a normalization factor to 

transform it into power per unit length. The average 

power over one baking cycle was used for the 

steady-state simulation A. The lateral distance of 

the inductor center from the symmetry line is 𝑧ind
−  

for the lower baking plates and zero for the upper 

baking plates. 

 

The functions 𝑓𝑦( ⋅ ) and 𝑓𝑧( ⋅ ) are shape functions 

satisfying the integral properties ∫ 𝑓𝑦(𝑦) d𝑦
∞

0
= 1 

and ∫ 𝑓𝑧(𝑧) d𝑧
∞

−∞
= 1. The shape functions are 

shown in Figure 2 in a normalized form. Within 

numerical accuracy, both shape functions do fulfill 

the integral properties for the relevant finite integral 

bounds, i.e. the baking plate dimensions. The shape 

function  

𝑓𝑦(𝑦) = {

2

δE

𝑒−2𝑦/δE 𝑦 > 0

0 𝑦 ≤ 0

,       δE = √
𝜌𝐸

𝜇𝐸𝜋𝑓
 

is based on exponential decay and the 

electromagnetic field’s penetration depth δE [4]. 𝜌𝐸 

is the electric resistivity of the material, 𝜇𝐸 is the 
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magnetic permeability, and 𝑓 is the frequency of 

the electromagnetic field. An electromagnetic FEM 

solution with appropriate mesh element quality [5] 

and spatial resolution is of considerable 

computational complexity. Thus, 𝑓𝑦( ⋅ ) is used. 

The shape function 𝑓𝑧(𝑧) = 𝑎(erf(𝑏|𝑧| − 𝑐) −

erf(𝑏|𝑧| − 𝑑)) in 𝑧-direction is based on sigmoid 

functions. The location and scale parameters 

𝑎, 𝑏, 𝑐, 𝑑 were identified by the least-squares error 

method based on frequency-domain simulations. 

 

Model of the Baking Process 

The ratio 
𝐿b𝛿b

2𝐿𝑦𝐿𝑧
 of the cross-sectional areas of the 

batter to the baking plates does not equal their 

volume ratios. The 2D FEM model entails a model-

plant mismatch rectified using the mass density 𝜌 =

𝜌w
𝑉b

𝐿b𝛿b𝐿𝑥
. Here, 𝜌w is the mass density of water. 𝑉b 

is the actual batter volume, and 𝐿b𝛿b𝐿𝑥 is its 

volume in the 2D FEM analysis. The thermal 

conductance 𝜆 of batter is assumed to be equal to 

that of liquid water. Due to the small δ𝑏, the 

influence of this parameter is negligible. 

 

The energy needed to bake one wafer is given by 

the enthalpy difference Δ𝐻 between the raw batter 

and the finished product. In this work, all dry 

components are considered to have a common 

specific heat capacity 𝑐d. The water content enters 

as mass fraction 𝑝w, while 𝑐w and 𝑐v are the 

specific heat capacities of water and vapor. The 

latent heat of vaporization at temperature 𝑇v is ℎv. 

The initial temperature of the batter is 𝑇0, and the 

product and the water vapor reach 𝑇1 at the end of 

the baking process. The enthalpy difference is then 

given by 

Δ𝐻 = 𝜌w𝑉b((1 − 𝑝w)𝑐d(𝑇1 − 𝑇0)                         (2) 

    + 𝑝w𝑐w(𝑇v − 𝑇0) + 𝑝w𝑐v(𝑇1 − 𝑇v) + 𝑝wℎv). 

 

For the steady-state simulation A, the energy Δ𝐻 

has to be supplied each baking cycle with duration 

tc. Thus, a negative source term in the batter 

domain 𝐴b is introduced: 𝑄 =
−Δ𝐻

𝑡𝑐𝐿b𝛿b𝐿𝑥
. 

 

The transient simulation B uses a nonlinear model 

to approximate the baking process accurately. The 

specific heat capacity of the batter domain is 

temperature dependent and satisfies Δ𝐻 =

𝜌w𝑉b ∫ 𝑐p(𝑇) dT
𝑇1

𝑇0
. In order to speed up simulations 

and to ensure a differentiable 𝑐p(𝑇), a smooth unit 

step function st( ⋅ ) as well as a smooth impulse 

imp( ⋅ ) function are used to approximate the 

impulse and step at 𝑇v. Together with the heat 

capacities 𝑐p,1 and 𝑐p,2 at temperatures below and 

above 𝑇v, 

𝑐p,1 = (1 − 𝑝w)𝑐d + 𝑝w𝑐w 

𝑐p,2 = (1 − 𝑝w)𝑐d + 𝑝w𝑐v, 

the expression for 𝑐p(𝑇) follows as 

 
Figure 3. Steady-state temperature field in a typical 

baking plate. 𝛿𝑏 is the batter thickness. 

𝑐p(𝑇) = 𝑐p,1st (
𝑇v − 𝑇

𝜎𝑇

) + 𝑐p,2 (1 − st (
𝑇v − 𝑇

𝜎𝑇

))  

                                        + 𝑝wℎvimp (
𝑇 − 𝑇v

𝜎𝑇

). 

Here, 𝜎𝑇 is a smoothening parameter. The functions 

st( ⋅ ) and imp( ⋅ ) satisfy ∫ imp(𝜁) d𝜁
∞

−∞
= 1 and 

are based on Gaussian functions: 

st(𝜁) =
1

2
(1 + erf(𝜁)) =

1

√2𝜋
∫ 𝑒−

𝜂2

2  d𝜂
𝜁

−∞
, 

imp(𝜁) =
1

√2𝜋
𝑒−

𝜁2

2 =
d

d𝜁
st(𝜁). 

Further phase transitions like melting of fats or 

sugar can be considered in a similar way. 

 

A linear batter model with the same qualitative 

behavior as the previous 𝑐p(𝑇) was developed and 

used in the transient simulation C. Here, 𝑐p,1 is used 

as the constant specific heat capacity of the batter. 

To satisfy the energy balance, the source term 

𝑄(𝑦, 𝑧, 𝑡) = 𝑄(𝑡) in the batter domain is used to 

remove the enthalpy difference Δ𝐻C = Δ𝐻 −
𝜌w𝑉b𝑐p,1(𝑇1 − 𝑇0). Thus, in the transient simulation 

C, the source term 𝑄(𝑡) =
−Δ𝐻C

𝑡b𝐿b𝛿b𝐿𝑥
 for the time 

interval 𝑡b of every cycle and 𝑄(𝑡) = 0 otherwise. 

The time 𝑡b is the duration of the hissing phase.  

 

The steady-state temperature field for a specific 

baking plate thickness is shown in Figure 3. The 

areas directly facing the inductors are warmer than 

the distant edges of the baking plates. This is more 

pronounced for the upper baking plate because the 

inductors are lined up here, while there are always 

two inductors in parallel for the bottom plates. 

Optimization Problem 
The antagonistic objectives of fast start-up times 

and low temperature variation can be balanced by 

weighting them according to their relative 

importance. We seek to minimize a cost function 

𝐶(𝐿𝑦) that depends only on the scalar value of the 

baking plate thickness. It is based on the weighted 

sum 𝐶(𝐿𝑦) = 𝐶𝑡𝑡start(𝐿𝑦) + 𝐶𝑇,𝑡𝑇Δ,t(𝐿𝑦) +

𝐶𝑇,𝑧𝑇Δ,z(𝐿𝑦) where 𝐶𝑡𝑡start(𝐿𝑦) is the cost related 
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Figure 4. Start-up time 𝑡𝑠𝑡𝑎𝑟𝑡 vs. baking plate thickness 

𝐿𝑦 and comparison with the linear approximation 𝑘𝑡𝐿𝑦.  
Figure 5. Temperature variations depending on the 

baking plate thickness 𝐿𝑦. Blue lines refer to the lower 

baking plates and orange lines to the upper baking 

plates. 

to the start-up time 𝑡start, 𝐶𝑇,𝑡𝑇Δ,t(𝐿𝑦) is the cost 

related to the temporal temperature variation 

𝑇Δ,t(𝐿𝑦), and 𝐶𝑇,𝑧𝑇Δ,z(𝐿𝑦) is the cost related to the 

spatial temperature variation 𝑇Δ,z(𝐿𝑦) along the 𝑧-

direction. The positive values 𝐶𝑡, 𝐶𝑇,𝑡, and 𝐶𝑇,𝑧 

control the relative importance of start-up time, 

temporal temperature variation and spatial 

temperature variation. 

 

The start-up time 𝑡start can be identified by 

transient simulations. It is defined here as the time 

when the spatially averaged temperature in the 

baking plates exceeds 𝑇1 = 185 °C for the first 

time. 

𝑡start = min 𝑡                                               (3a) 

s. t.  
∫ 𝑇(𝑦, 𝑧, 𝑡) d𝐴

𝐴Fe

∫ d𝐴
𝐴Fe

≥ 𝑇1, (3b) 

𝐴Fe = 𝐴Fe
+ ∪ 𝐴Fe

− .   (3c) 

 

The condition in (3) can only be satisfied if the 

temperature is rising, i.e., when the baking plate is 

under an inductor. Since these periods of time are 

spaced by the cycle time 𝑡𝑐, 𝑡start can only have 

values from 𝑡𝑐-spaced intervals, leading to the 

nonsmooth shape in Figure 4. Put differently, a 

small increase of 𝐿𝑦 either leads to a 𝑡start within 

the same cycle (nearly unnoticeable increase of 

𝑡start) or to a 𝑡start in the next cycle time, 

approximately increasing 𝑡start by 𝑡𝑐. Since these 

discontinuities in 𝑡start(𝐿𝑦) are different for almost 

all baking plates in the oven, using the linear 

approximation 𝑡start ≈ 𝑘𝑡𝐿𝑦 instead of the FEM 

results is the more sensible choice. 

 

Temporal temperature inhomogeneities are related 

to the temperature range the product experiences 

during baking. Spatial temperature inhomogeneities 

inevitably lead to uneven product quality, e.g., in 

browning and residual moisture. This work uses the 

temporal standard deviation of a scalar, time-variant 

temperature as a temporal inhomogeneity measure. 

The spatially averaged temperatures 𝑇f
−(𝑡) and 

𝑇f
+(𝑡) of the lower baking face and the upper 

baking face, respectively, and their temporal 

standard deviation read as: 

𝑇f
±(𝑡) =

2

𝐿𝑏

∫ lim
Δ→0+

𝑇 (±
𝛿b

2
± Δ, 𝑧, 𝑡)  d𝑧

𝐿𝑏
2

0

,   (4a) 

𝑇̅f
± =

1

𝑛𝑡𝑐

∫ 𝑇f
±(𝑡) d𝑡

𝑡0+𝑛𝑡𝑐

𝑡0

,                    (4b) 

𝑇Δ,t
± = √

1

𝑛𝑡𝑐

∫ (𝑇f
±(𝑡) − 𝑇̅f

±)
2

 d𝑡
𝑡0+𝑛𝑡𝑐

𝑡0

. (4c) 

 

The limit for the 𝑦-coordinate is necessary due to 

the thermal contact resistance assumed between the 

batter and the baking plates. The integer 𝑛 is the 

number of cycles used for arithmetic averaging. 

 

The spatial inhomogeneity is assessed in this work 

based on the mean of the temperature gradient 

magnitude obtained in the steady-state scenario A: 

𝑇Δ,z
± =

2

𝐿𝑏

∫ lim
Δ→0+

|
𝜕

𝜕𝑧
𝑇 (±

𝛿𝑦

2
± Δ, 𝑧)| d𝑧

𝐿b
2

0

. (5) 

 

Figure 5 shows the temperature variation depending 

on the baking plate thickness. All axes use a 

logarithmic scale. The temperature variations 

decrease with 𝐿𝑦, approximately proportional to 

1/𝐿𝑦 over a wide range. The temporal standard 

deviations of the lower baking plates 𝑇Δ,t
−  

consistently exceed those of the upper baking 

plates, while the spatially averaged gradient 

magnitude of the upper baking plates 𝑇Δ,z
+  is higher 

than 𝑇Δ,z
− . This can be attributed to the inductor 

layout (see Figure 1): Two inductors arranged in 

parallel lead to reduced gradients in 𝑧-direction. On 

the other hand, this arrangement increases the 

temporal variations since the inductive power is 

concentrated in a shorter time for the lower baking 

plates. 
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For large values of 𝐿𝑦, the temporal standard 

deviations flatten out or increase again. The 

deviation from the 1/𝐿𝑦-behavior is neglected in 

this work, i.e., the measures of the temperature 

variation can be approximated by 
𝑘Δ

𝐿𝑦
, with a 

constant 𝑘Δ for each measure. 

 

The baking plate thickness is confined to the 

interval [𝐿𝑦
−, 𝐿𝑦

+], where 𝐿𝑦
− is the minimum length 

required for mechanical stability and 𝐿𝑦
+ is an upper 

bound associated with the maximum load of the 

transport mechanism. This work uses 
[10 mm, 50 mm] as an admissible set for the 

baking plate thickness 𝐿𝑦. 

 

The optimization problem can then be formulated 

as 

𝐿𝑦
∗ = arg min

𝐿𝑦∈[𝐿𝑦
−,𝐿𝑦

+]

𝐶(𝐿𝑦)                                              (6)
 

                    s. t.  𝑡start                        according to (3) 
                            𝑇Δ,t = 𝑇Δ,t

+ + 𝑇Δ,t
−    according to (4) 

                            𝑇Δ,𝑧 = 𝑇Δ,z
+ + 𝑇Δ,z

−   according to (5) 

 

The low dimension (scalar optimization variable 

𝐿𝑦) and relatively high computational costs of the 

FEM analysis stimulated using the following 

solution strategy: Identify the influence of 𝐿𝑦 on 

𝐶(𝐿𝑦) from a few simulations, derive a 

computationally inexpensive surrogate function 

𝐶𝑠(𝐿𝑦) that approximates 𝐶(𝐿𝑦) with sufficient 

accuracy, and minimize 𝐶𝑠(𝐿𝑦) instead of 𝐶(𝐿𝑦). 

Results and Discussion  
The discussed approximations of the temperature 

variations 𝑇Δ,t = 𝑇Δ,t
+ + 𝑇Δ,t

−  and 𝑇Δ,z = 𝑇Δ,z
+ + 𝑇Δ,z

−  

can be expressed in the form 𝑇Δ,t ≈
𝑘Δ,t

+

𝐿𝑦
+

𝑘Δ,t
−

𝐿𝑦
=

𝑘Δ,t

𝐿𝑦
 

and 𝑇Δ,z ≈
𝑘Δ,z

+

𝐿𝑦
+

𝑘Δ,z
−

𝐿𝑦
=

𝑘Δ,z

𝐿𝑦
 where the four different 

𝑘Δ are the constants used for the approximation. 

The compact notation of the surrogate cost function 

then follows as the convex function 

𝐶𝑠(𝐿𝑦) = 𝐶𝑡𝑘𝑡𝐿𝑦 + 𝐶𝑇,𝑡

𝑘Δ,t

𝐿𝑦

+ 𝐶𝑇,𝑧

𝑘Δ,z

𝐿𝑦

. 

The approximate solution to (6) is then given by 

𝐿𝑦
∗ ≈ arg min

𝐿𝑦∈[𝐿𝑦
−,𝐿𝑦

+]

𝐶𝑠(𝐿𝑦) , (7)
 

which can be explicitly calculated. The solution is 

given by √(𝐶𝑇,𝑡𝑘Δ,t + 𝐶𝑇,𝑧𝑘Δ,z)/(𝐶𝑡𝑘𝑡) if it lies 

inside [𝐿𝑦
−, 𝐿𝑦

+], or its projection into the interval. 

 

Figure 6 shows the cost function and its 

components, as well as their corresponding 

approximations for the following set of weights: 

𝐶𝑡 = 1
1

min
, 𝐶𝑇,𝑡 = 5

1

°C
 and 𝐶𝑇,𝑧 = 5

cm

°C
. In the 

shown example, simulation C was used for the 

temporal variations (using simulation B or the sum 

of both yields qualitatively equal results). 

 
Figure 6. Cost function 𝐶(𝐿𝑦) and its components (top 

row of legend) and corresponding approximations 

(bottom row of legend). Simulation C was used for 

temporal temperature variations. The minimum (black x) 

was calculated based on the surrogate function. 

Conclusions 
A finite element model of a pair of baking plates 

used in an industrial wafer baking oven was 

derived, simplified, and used for design 

optimization in a computationally efficient way. 

Namely, the phase change of the batter and the 

inductive heating were modeled by their thermal 

effects alone, and the optimization problem was 

converted to a surrogate optimization. The 

computational costs of FEM simulations and the 

baking plate design optimization could be 

significantly reduced. 
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