

Simulating condensate layers on thermal bridges in train walls

Felix Lüönd and Tom Graf

Engineering and Architecture

November 14, 2023

FH Zentralschweiz

Goal: Calculate the amount and distribution of water condensing on the surface of thermal bridges in train walls.

- C-rack as an example of a frequent thermal bridge in train walls
- C-rack usually has direct thermal contact to the metallic hull of the car body
- C-rack is in contact with the warm cabin air
- \rightarrow high relative humidity and condensing moisture on the surface of the C-rack.

1D test case for different models with purely diffusive moisture transport

 $T = 20^{\circ}C, RH = 40\%$

Typical steady state temperature and relative humidity distribution

Three ways to implement a condensed water layer in COMSOL

1D test case for different layer growth models: Purely diffusive moisture transport

- 1. COMSOL provided: «Moist surface» node in the «Moisture Transport in Building Materials» physics
- with custom ODE
- 3. Custom model: «Sponge model», air layer modeled as a Building material with artificial moisture capacity

2. Custom model: «Film growth model», calculate condensate layer thickness from vapor flux

1. COMSOL provided: «Moist surface» node

- ulletMaterials» physics
- Designed to model convective moisture transport ullet
- Evaporation only if a liquid layer exists \bullet
- Condensation only for RH>1
- ullet

$$K = -D \cdot \frac{dc_{v}}{dx} \cdot \frac{1}{c_{sat}(T) - c_{v}} \to g_{evap} = -M_{v} \cdot D \cdot \frac{dc_{v}}{dx}, \quad \text{if} \quad c_{v}$$

1. «Moist surface» node: Test with condensation/evaporation cycles

- Vapor flux $g_{evap} \neq 0$, despite RH < 1 and $c_{liq,ini} = 0$
- Vapor flux $g_{evap} < 0$ always, despite RH < 1
- $c_{liq} = 0$, despite $g_{evap} < 0$

ni = 0 Erroneous and inconsistent results?!

2. Custom model: «Film growth model»

- •
- 2 weak inequality constraints at Point 2 to impose that:
 - $\phi \leq 1$
 - $\phi = 1$ if $d_{film} > d_0$ with $d_0 = 10^{-9}m$
- Model solves for dependent variable d_{film} defined by ODE:

$$\frac{d \, d_{film}}{dt} = \left(\theta(\phi - 1) + \theta\left(d_{film}\right) \cdot \left(1 - \theta(\phi - 1)\right)\right) \cdot \frac{1}{\rho} \left(-\delta_p \vec{\nabla} p_v \cdot \vec{n}\right) \qquad \theta(x) = \begin{cases} 0, & x < 0\\ 1, & x > 0 \end{cases}$$

2. Custom model: «Film growth model»

- Relative humidity at point 2 is limited to RH = 1, and consistent with the vapor flux.
- RH = 1 persists into the evaporating period due to the existence of a liquid film

Time [h]

Page 8

3. Custom built: «Sponge model»

- Water condensation within the «Air» domain

- Water film thickness d calculated from moisture **HSLU** November 14, 2023

- Air modeled as a porous building material with an artificial moisture capacity function $wc(\phi)$

e content
$$c_w \left[\frac{mol}{m^3}\right]$$
: $d = \frac{M_w}{\rho} \int_{Point 2}^{Point 3} c_w(x) dx$

«Film growth model» vs. «Sponge model»

- Good agreement between «Film model» and «Sponge model».
- Both models are able to predict the amount of water condensed on a surface.

«Film model» vs «Sponge model»

	2. Film growth model	3. Sponge model
Advantages	 Direct calculation of d_{film} close representation of the physics Possible to combine with transport by convection 	 Easy to implement No constraints necessary
Disadvantages	 Increased model complexity: +1 ODE, +2 constraints Evaporation requires very small timesteps in 2D Neglects the influence of condensed moisture on conductive heat transport 	 Not possible to combine with transport by convection d_{film} difficult to calculate in 2D Sensitivity to the arbitrary definition of wc(φ) in 2D Neglects the influence of condensed moisture on conductive heat transport

Film growth model has been selected to calculate condensation on thermal bridges in 2D and 3D.

2D Sim. of condensation on a thermal bridge in train walls using «Film growth model»

Winter scenario with constant boundary conditions: $T_{out} = -1^{\circ}C$, $T_{in} = 21^{\circ}C$, $RH_{in} = 30\%$

- Convection dominates water vapor transport over diffusion. -
- Droplets running from the surface of a thermal bridge have to be expected after ~ 10 h in a winter scenario. -
- Thermal insulation of the thermal bridge substantially reduces the amount of condensing water. —

Condensation is most pronounced at protruding edges and corners. _ HSLU

2D Sim. of condensation on a thermal bridge in train walls using «Film growth model»

Conclusions

- The COMSOL preset «Moist surface» node has not yielded plausible results for the growth and evaporation of a condensate layer.
- Two different custom approaches («Film growth model» and «Sponge model») have been successfully tested in 1D with nearly identical results for the resulting condensate film thickness.
- The «Film model» has been coupled to CFD to include convective moisture transport in 2D simulations of condensation on a thermal bridge in train walls:
 - Convection dominates water vapor transport over diffusion. Ο
 - Droplets running from the surface of a thermal bridge have to be expected after ~ 10 h in a winter Ο scenario.
 - Thermal insulation of the thermal bridge substantially reduces the amount of condensing water. Ο
- In 2D, the «Film model» is computationally very expensive in cases of evaporation, due to rapid changes in the ODE when $d_{film} \rightarrow 0$.

Page 14

Thank you!

Lucerne School of Engineering and Architecture

Dr. Felix Lüönd

Phone direct +41 41 349 37 11 felix.lueoend@hslu.ch

Prof. Dr. Tom Graf

Phone direct +41 41 349 35 10 thomas.graf@hslu.ch

FH Zentralschweiz

Annex

HSLU November 14, 2023

Page 16

Validation of the growth rate of the water film for **steady** 40% RH on warm side (Point 4):

-

where $\delta_p = 2.01 \times 10^{-7} s \cdot T^{0.81} \cdot \frac{1}{m} = 1.89 \times 10^{-10} s \dots 1.93 \times 10^{-10} s$ for T between 273 K ... 281 K patm

growth-model): $\frac{d}{dt}d_{film} = \frac{5.5 \times 10^{-6}m}{3600 s} = 1.53 \times 10^{-9} \frac{m}{s}$ HSLU

Consistency of heat flux at cold wall (Point 2) for on-off 40% RH on warm side (Point 4):

Condensing $(t_1 = 1.45 h)$:

- $\nabla T = 850 \frac{K}{m} \rightarrow q_{sens} = -k \cdot \nabla T = -19.6 \frac{W}{m^2}$
- Total heat flux reported at point 2: $q_{tot} = -23.8 \frac{W}{m^2}$
- (as vapor cannot penetrate Aluminum)

Latent heat flux: $q_{lat} = q_{tot} - q_{sens} = -4.2 \frac{W}{m^2}$, in negative x-direction, released at Point 2

• Latent heat release expected from growth of water film: $q_{lat,exp} = \frac{a}{dt} d_{film} \cdot \rho_w \cdot L_v = 3.5 \frac{W}{m^2}$

Evaporating: $(t_2 = 2.15 h)$:

- $\nabla T = 670 \frac{\bar{K}}{m} \rightarrow q_{sens} = -k \cdot \nabla T = -15.4 \frac{W}{m^2}$
- Total heat flux reported at point 2: q_{tot}
- Latent heat flux: $q_{lat} = q_{tot} q_{sens} = +4.9$ wall)
- Latent heat release expected from grov $5.5 \frac{W}{m^2}$

Point 2	Condensing ($t_1 = 1.45 h$)	Evaporating ($t_1 = 2.15 h$)
∇T air	$850\frac{K}{m}$	$670 \frac{K}{m}$
$q_{sens} = -k \cdot \nabla T$	$-19.6 \frac{W}{m^2}$	$-15.4 \frac{W}{m^2}$
<i>q_{tot}</i> reported	$-23.8\frac{W}{m^2}$	$-10.5\frac{W}{m^2}$
$-q_{lat} = -(q_{tot} - q_{sens})$	$4.2\frac{W}{m^2}$	$-4.9\frac{W}{m^2}$
$q_{lat,exp} = \frac{d}{dt} d_{film} \cdot \rho_w \cdot L_v$	$3.5\frac{W}{m^2}$	$-5.5\frac{W}{m^2}$

$$= -10.5 \frac{W}{m^2}$$

 $9 \frac{W}{m^2}$ in positive x-direction (away from cold

• Latent heat release expected from growth of water film: $q_{lat,exp} = \frac{d}{dt} d_{film} \cdot \rho_w \cdot L_v =$

- T = 293 K, **RH = 40%** Basotect

Evaporating $(t_2 = 2.15 h)$

Basotect

- T = 293 K, RH = 0%

2. Film growth model: Using the correct vapor flux quantity

Comparison between vapor flux quantities for steady-state condensation, after 4h:

 $\cdot mt.tfluxx$ to calculate the condensing mass??

Page 21

3. Custom built: «Sponge model»

- Good agreement between «Film model» and «Sponge model».
- Both models are able to predict the amount of water condensed on a surface.

Page 22

Will running drops form?

Integrate d_{film} over surface area $A \approx 1 \ cm^2 \rightarrow$ Water volume V

- Concentrate V in one hemispherical drop
- Compare V to critical droplet volume V_{crit} for 90° inclination angle (vertical wall)
- $V \ge V_{crit}$: Running droplet -
- $V < V_{crit}$: Sessile droplet -
- \rightarrow Running droplets predicted earlier than in reality (Concentration in 1 drop)
- \rightarrow But: Vibrations may reduce V_{crit}
- \rightarrow No precise predictions are possible about the time when droplets start running off. HSLU

Critical inclination angle of water droplets on aluminum surface. Sommers et al., 2006

Annex: Mesh sensitivity of dfilm for Geometry 2 (2D)

Annex: Sponge-Model: Sensitivity to relative tolerance and $wc(\phi)$

HSLU

Wc-model: Relative tolerance 0.00025 is required, even 0.0001 if evaporation takes place
Even with low tolerance, sharp wc(φ) function leads to erroneus results. (→ sharp corner?)
Smoothing wc(φ) leads to an earlier onset of condensation compared to dfilm-model

Annex: Influence of a condensed water film on heat transport?

$$= T_{Alu} + I_{therm} \cdot R_{th,w} > T_{Alu}$$

Model assumes $T_w = T_{Alu} \rightarrow$ condensation rate overestimated

• $R_{th,w} \sim d_{film}$: Temperature difference $\Delta T = T_w - T_{Alu}$ increases with increasing d_{film}

• $\Delta T \approx 1 \ K \text{ for } d_{film} \approx 1 \ mm$

• Most simulated d_{film} are on the order max. 0.1 mm

 \rightarrow Most simulated water films are thin enough that $T_w = T_{Alu}$ is a valid assumption.

Annex: Sensitivity of dfilm to vertical length for Geometry 2 (2D)

0.4 m vertical length: Max. downward velocity 13 cm/s

0.2 m vertical length: Max. downward velocity 10.5 cm/s

Annex: Sensitivity of dfilm to vertical length for Geometry 2 (2D)

HSLU

Sensitivity of max. vertical velocity to vertical length in rectangular, homogeneous test cell ($\Delta T = 10 K$):

- Exact amount of water condensed
 - Larger cell: More condensation on protruding surfaces, less condensation within C-profile

