

Magnetic shielding of an electrical substation

SYBRAND ZEINSTRA

(SYBRAND.ZEINSTRA@DEMCON.COM)

COMSOL CONFERENCE 2023

MULTIPHYSICS

Introduction

- Demcon group:
 - Engineering group, Netherlands
 - +1000 employees
 - Product and one-off development

Demcon Multiphysics:

- Physics consultancy division
- 20 employees
- Active in flow, thermal, electromagnetism, structural, etc.

Electromagnetics

Structural mechanics

Thermal

Plasma physics

Experiments

Acoustics and

Multiphysics engineer

DEMCON

Introduction

- In electrical substations current is transformed to a lower voltage
- Large currents in cables in substations generate magnetic fields
- Exposure limit 100 μT at 50 Hz
- Goal: Simulate magnetic shielding to stay below the exposure limit outside the substation
- Focus will be on a consistent and convenient method to compute current paths

Approach

- Setup geometry
- Calculate the current distribution along the cables using the Edge PDE interface
- Use current distribution as input for the Edge Current feature in the Magnetic Fields interface
- Compute the magnetic fields
- Design magnetic shielding

Geometry overview

- Of the substation we include the:
 - Walls
 - Transformer
- The electrical cables are represented by line segments
- On one side of the transformer, we have incoming high voltage (HV) cables
- On the other side, there are outgoing medium voltage (MV) cables

Calculate current distribution

- To use the Edge Current feature in the Magnetic Fields interface, each line segment needs a specified current
- Tedious and error-prone because of:
 - Sign usage due to arbitrary edge direction
 - Junctions, where current paths split or merge
- Here the current direction of the HV current is opposite to the direction of the edge

Laplace equation

 Use the Edge PDE interface to impose a Laplace equation on the cables

$$\nabla_T^2 u = 0$$

- Here *u* plays the role of a scalar potential
- Its gradient (a flux) $\Gamma = -\nabla_T u$ is the current
- Automatic current conservation
- Assumption: All cables have the same resistance per unit length

Laplace equation – boundary conditions

- On one end we set a boundary flux source equal to the input RMS current
- On the other end of the current path, we set a Dirichlet boundary condition u = 0
- This is indicated schematically for the current path on the right
- The obtained RMS current distribution
 *I*_{comp} is used as input using the Edge
 current feature

$$I = \sqrt{2} I_{\rm comp} e^{i\phi}$$

Magnetic field calculation

- We compute the magnetic fields using the Magnetic Fields interface
- This interface computes induction currents, which is relevant for the magnetic shielding
- The transformer is excluded via a magnetic insulation condition on its surface
- The 100 µT contour of the B-field extends outside of the walls of the substation

BEFORE

Magnetic shielding design

- We apply shielding to the orange part of the inner wall
- The shielding consists of aluminium sheets, based on its high conductivity
- We model the effect of the shielding via a transition boundary condition
- The dimensions were varied to determine the amount of material required

Magnetic shielding effect

 With the magnetic shielding in place, the 100 μT contour becomes mostly confined to the interior of the substation, apart from a small region that is inaccessible due to its height

- We designed and simulated magnetic shielding to reduce the magnetic field outside the substation below the 100 μT limit
- To impose the correct edge currents on all line segments, we implemented a Laplace equation on the line segments
- This is a consistent and convenient method to compute current paths that helps us a lot in our modelling work

Contact: sybrand.zeinstra@demcon.com

Shielding mechanism

- The magnetic field of the substation induces eddy currents in the shielding
- The magnetic fields created by these eddy currents are opposed to the magnetic field of the substation
- This reduces the magnetic field outside the substation

