

COMSOL Conference 10–12 october 2012, Milan

3D simulations of an injection test done into an unsaturated porous and fractured limestone

Alain Thoraval, INERIS – alain.thoraval@ineris.fr Yves Guglielmi, CEREGE, U. Marseille Frederic Cappa, GEOAZUR, U. Nice

Introduction

Issues

- growing concern about environmental protection on issues such as the stability of rocky slopes or the sealing of underground storage sites
- both in situ measurements and model developments are needed to fully understand and predict the risks of instability and/or the fluid flow pattern into the rock mass

Context

- french research program called HPPP_{CO2} founded by ANR. The overall objective of the program is to develop tools and methods to characterize porous and fractured rock environments
- this program focuses on experiments conducted at the LSBB site (Laboratoire Souterrain à Bas Bruit - Low Noise Underground Laboratory) located close to Apt, Vaucluse, France

Objectives of our contribution

- to develop numerical model to represent the effect of injection test in unsaturated porous and fractured rock mass
- to derive the rock-mass characteristics from numerical simulations of the in situ tests done during the program

Measurements done during the injection test

 The HPPP probe allows high frequency (1000 Hz)
 accurate measurements (0.1mm; 0.01 atm)

3 injection test phases:

(1) Q_{inj} and P_{water} reach progressively their max. values: <u>59 ℓ/mn</u> and <u>35 atm</u>; (2) they are maintained constant; (3) then gradually decreased

Injected

• change in P_{water} induced mechanical displacement (Ur and Ua) due to the rockmass strain and to fracture opening and shear (max. about 30 μm)

COMSOL conference Milan 2012 4/14

Model set-up

Injected

chamber

packers

borehole

Main assumptions

- 3D geometry around the injected zone (included 3 layers)
- 4 fractures included as equivalent porous tabular zones
- unsaturated porous rock mass (two phase flow considering van Genuchen relations)
- hydro-mechanical coupling
- mechanical constitutive law:elastic & elasto-plastic (DP)

Modeling phases

- 1) before borehole drilling
- 2) borehole drilling
- 3) packer inflating
- 4) injection test

3 layers

Fracture $(K_n, K_s, a_0) =>$ Porous tabular zone with eq. HM properties $(e, E_1, E_3, ..., k_{tabular})$:

$$E_3 = e K_n$$
 $E_1 = 1 K_s$
 $G_{13} = E_1 E_3 / (E_1 + E_3)$
 $k_{tabular} = a_0^3 / 12e$

Fluid and rockmass properties (reference case)

For the fluids:

- $\rho_{water} = 1000 \text{ kg/m}^3$; $\mu_{water} = 10^{-3} \text{ Pa.s}$; $K_{water} = 2 \cdot 10^9 \text{ Pa}$
- $\rho_{air}=1.28~kg/m^3$; $\mu_{air}=1.81~10^{-5}~Pa.s$; $K_{air}=1.41~10^5~Pa$

For the rock mass:

- ρ_R (saturated density) = 2650 kg/m³
- E_{u} (undrained Young modulus) = 25 MPa (10 GPa for layer 2)
- v_{II} (undrained Poisson ratio) = 0.25
- K_i (intrinsic perméability) = 2.10^{-14} (10^{-13} m² for layer 2)
- ϕ_{tot} (total porosity) = 0.20
- ϕ_{res} (residual porosity) = 0.08 (0.15 for layer 2)
- **b** (Biot coefficient) = 0.9
- van Genuchten parameters: a = 0.66; b = 0.5; c = 0.9; $P_0 = 100000$ Pa to define P_c , kr_{water} , kr_{air} (data from Lavoux limestone laboratory test)

For the fracture:

• $K_n = 5$ GPa/m; $K_s = 0.1$ GPa/m; $a_0 = 2 \cdot 10^{-4} = 5$ "equivalent" tabular zone: e = 0.04 m; $E_1 = 100$ MPa; $E_3 = 200$ MPa; $G_{13} = 67$ MPa; $K_{tabular} = 1.67 \cdot 10^{-11}$ m²

Description of the two-phase flow model without mechanical coupling

Two equations to describe the water (w) and air (nw) flows:

$$\mathbf{z}) = \mathbf{Q}_{\mathbf{m},\mathbf{w}}$$

Generalized

$$\rho_{w}\left(\frac{S_{w}}{\partial t} + \frac{\partial p_{w}}{\partial t} + C_{p,w} \frac{\partial p_{nw}}{\partial t}\right) + \nabla \cdot \left(-\rho_{w} \frac{k_{i}kr_{w}}{\mu_{w}} (\nabla p_{w} + \rho_{w}g\nabla z)\right) = Q_{m,w}$$

$$\rho_{nw}\left(C_{p,w}\frac{\partial p_{w}}{\partial t} + S_{nw}\frac{\partial p_{nw}}{\partial t}\right) + \nabla.\left(-\rho_{nw}\frac{k_{i}kr_{nw}}{\mu_{nw}}(\nabla p_{nw} + \rho_{nw}g\nabla z)\right) = Q_{m,nw} \\ \text{Source terms}$$

with:

$$S_{w} = -C_{p,w} + \frac{\theta_{w}}{K_{w}} \qquad S_{nw} = -C_{p,w} + \frac{\theta_{nw}}{K_{nw}} \qquad C_{p,w} = \frac{\partial \theta_{w}}{\partial p_{c}} = -\frac{\emptyset(1-sr_{w})}{p_{0}} \frac{a}{(1-a)} se_{w}^{\frac{1}{a}} \left(1-se_{w}^{\frac{1}{a}}\right)^{a}$$

where:

- ϕ is the total porosity; θ_w and θ_{nw} are the volume fraction ($\theta_w + \theta_{nw} = \phi$)
- Se_w and Se_{nw} are the effective saturation (Se_w + Se_{nw} = 1)
- p_w and p_{nw} are the fluid pressures ($p_c = p_{nw} p_w$ is the capillary pressure)
- κ_{int} is the intrinsic permeability of the porous medium [m²]; kr_{w} and kr_{nw} are the relative permeabilities (defined from the well known van Genuchten equations)
- μ_w and μ_{nw} are the fluid's dynamic viscosities; ρ_w and ρ_{nw} are the fluid densities; K_w and K_{nw} are the fluid compressibilities

Description of the hydro-mechanical model Single-phase flow

For a single-phase flow, the hydro-mechanical coupling impacts the flow equation as followed:

$$\begin{split} \rho_f \, S \frac{\partial p_f}{\partial t} + \, \nabla \left(\rho_f \, \left(-\frac{k_i}{\mu_f} (\nabla p_f + \rho_f g \nabla z) \right) \right) = \left(-\rho_f \, b \, \frac{\partial (\varepsilon_{vol})}{\partial t} \right) \\ S = \frac{\phi}{K_f} + \frac{(b - \phi)(1 - b)}{K_f} \end{split} \quad \text{terms due to HM coupling}$$

where: b is the Biot coefficient; ϵ_{vol} is the trace of the strain tensor; K_0 is the drained bulk modulus of the rock mass

An additional equation has to be considered related to solid deformation under purely gravitational load (inertial effects neglected):

$$-\nabla \cdot \sigma_{tot} = \rho_{R} \cdot g = (\rho_{R}^{0} + \phi \rho_{f})g$$

where: σ_{tot} is the total stress tensor; $\rho_R \& \rho_R^0$ are the saturated & dry density

COMSOL conference Milan 2012 8/14

with:

Description of the hydro-mechanical model Two-phase flow

For a two-phase flow, we propose the following set of equations:

$$\rho_{w} \left(S_{w} \frac{\partial p_{w}}{\partial t} + C_{p,w} \frac{\partial p_{nw}}{\partial t} \right) + \nabla \cdot \left(-\rho_{w} \frac{k_{i} k r_{w}}{\mu_{w}} (\nabla p_{w} + \rho_{w} g \nabla z) \right) = -\rho_{w} \ b \ \frac{\theta_{w}}{\phi} \frac{\partial (\varepsilon_{vol})}{\partial t}$$

$$\rho_{nw}\bigg(C_{p,w}\frac{\partial p_{w}}{\partial t} + S_{nw}\frac{\partial p_{nw}}{\partial t}\bigg) + \nabla.\bigg(-\rho_{nw}\frac{k_{i}kr_{nw}}{\mu_{nw}}(\nabla p_{nw} + \rho_{nw}g\nabla z)\bigg) = \\ -\rho_{nw} \ b \ \frac{\theta_{nw}}{\phi}\frac{\partial(\varepsilon_{vol})}{\partial t}$$

with:

$$S_w = -C_{p,w} + \frac{\theta_w}{K_w} + \frac{(b-\theta_w)(1-b)}{K_0} \qquad \qquad S_{nw} = -C_{p,w} + \frac{\theta_{nw}}{K_{nw}} + \frac{(b-\theta_{nw})(1-b)}{K_0}$$

And the additional equation becomes:

$$-\nabla \cdot \sigma_{tot} = (\rho_R^{\ r}) \cdot g = (\rho_R^{\ 0} + \theta_w \rho_w + \theta_{nw} \rho_{nw}) \cdot g$$

top face

$$\sigma = \rho gh$$

$$P_{water} = 0.025 \text{ MPa}$$

$$P_{air} = 0.1 \text{ MPa}$$

$$=> Se_w = 0.79$$

other faces no displacement no (water & air) flow

on borehole walls				Bottom (6) .5	
		Before the borehole drilling	Borehole drilling	Packer inflating	Water injection and post injection
On borehole wall	(a) naked borehole	$\sigma_{r} = \rho gz$ $P_{water} = 0.025 \text{ MPa}$ $P_{air} = 0.1 \text{ MPa}$	$\sigma_{\rm r} = 0 - P_{\rm water} = 0.025 \text{MPa} - P_{\rm air} = 0.1 \text{MPa}$		
	(b) packers	$\sigma_r = \rho gz$ No (water & air) flow	$\sigma_r = 0$ No (water & air) flow	$\sigma_r = \rho gz$ No (water & air) flow	
	(c) chamber	$\sigma_r = \rho gz$ No (water & air)	σ _r = No (water		$\sigma_r = 0$ No air flow $O_r = f(times) = 0$

flow

Injected flowrate

 $Q_{ini} = f(time)$

COMSOL conference Milan 2012 10/14

Sensitivity studies

... on the value of :

- Young modulus: 12.5 GPa to 25 GPa / 5 GPa to 10 GPa for layer 2
- intrinsic permeability: 2. 10^{-15} to 2.10^{-14} m² / 10^{-14} to 10^{-13} m² for layer 2
- fracture parameters : K_n : 2.5 to 5 GPa/m ; K_s : 0.05 to 0.1 GPa/m ; a_0 : 0.1 to 0.5 mm

Impact of injection on water pressure variation and water effective saturation:

sensitive to the rock-mass intrinsic permeability value (k_i)

$$\Delta p_w$$
intact rock

0.21 MPa

0.06 MPa

=> back analysis from the measurements:

 k_i close to 10^{-14} m²

Impact of injection on displacement variation: sensitive to Young modulus value (E)

=> back analysis from the measurements:

E close to 5 GPa

Concluding remarks

- A specific COMSOL model has been developed to represent the hydromechanical behavior of a porous and fractured rock mass in unsaturated condition
- This model has been used to simulate an in situ injection test done at LSBB site in the field of the French ANR project HPPP-CO2
- Despite some convergence problems (for low permeability cases), the result given by the 3D model allow us:
 - to underline the impact of fractures on the hydro-mechanical response of the rock-mass to water injection that leads to pressure decrease and displacement increase
 - to estimate the rock mass intrinsic permeability and compressibility of the injected layer. From the simulation done and a comparison to the measurements, we can assume: a rock-mass intrinsic permeability close to 10^{-14} m² and a Young's Modulus close to 5 GPa