

Influence of the atmospheric disturbance on the respiration of a forest soil

C. Wylock, S. Goffin, M. Aubinet, B. Longdoz and B. Haut

October 23 - 25, 2013 WTC Rotterdam

ULB Motivation

- Assessment of forest soil respiration and its isotopic composition :
 - important issues for carbon cycling modeling (greenhouse gas emission control)
 - often inaccurate because soil respiration is a complex process :
 - several phenomena coupled
 - → highly sensitive to any disturbance
- Experimental campaign in Harteim (Germany)
 - Measure of global CO₂ flux $F_{\rm CO2}$ and its isotopic ratio $\delta^{13}[{\rm CO_2}]$ along time
 - Observation of significant intra-hour fluctuations not explained by current existing model

ULB Motivation

- Where do these intra-hours fluctuations come from ?
 - Atmospheric pressure fluctuations, i.e. due to wind?
 - Photosynthesis, i.e. due to variations of the amount of sunshine radiation ?
 - ...
- Mathematical modelling and simulation using COMSOL
 - Investigation of the influence of pressure fluctuations and photosynthesis on the soil respiration intra-hours fluctuations
 - → what is the role of these two phenomena?

Mathematical modelling

Basic equations

$$[^{12}CO_2]$$
 , $[^{13}CO_2]$ from measurements along time

$$\varepsilon \frac{\partial \left[^{12} \text{CO}_2\right]}{\partial t} = \frac{\partial}{\partial z} \left(D_{s,12} \frac{\partial \left[^{12} \text{CO}_2\right]}{\partial z} \right) + S_{12}$$
$$\varepsilon \frac{\partial \left[^{13} \text{CO}_2\right]}{\partial t} = \frac{\partial}{\partial z} \left(D_{s,13} \frac{\partial \left[^{13} \text{CO}_2\right]}{\partial z} \right) + S_{13}$$

 ε : porosity, determined experimentally for each layer

 D_s : diffusivity, determined experimentally for each layer

S: production rate by the micro-organisms and roots living in the soil, use of classical laws for soils

$$\frac{\partial \left[^{12} \mathsf{CO}_2\right]}{\partial z} = \frac{\partial \left[^{13} \mathsf{CO}_2\right]}{\partial z} = 0$$

ULB Mathematical modelling

Basic equations + atmospheric pressure fluctuations

$$\left[^{12}\mathrm{CO_2}\right]$$
 , $\left[^{13}\mathrm{CO_2}\right]$, p from measurements along time

$$\varepsilon \frac{\partial \begin{bmatrix} ^{12}\text{CO}_2 \end{bmatrix}}{\partial t} = \frac{K}{\eta} \frac{\partial}{\partial z} \left(\begin{bmatrix} ^{12}\text{CO}_2 \end{bmatrix} \frac{\partial p}{\partial z} \right) + \frac{\partial}{\partial z} \left(D_{s,12} \frac{\partial \begin{bmatrix} ^{12}\text{CO}_2 \end{bmatrix}}{\partial z} \right) + S_{12}$$

$$\varepsilon \frac{\partial \begin{bmatrix} ^{13}\text{CO}_2 \end{bmatrix}}{\partial t} = \frac{K}{\eta} \frac{\partial}{\partial z} \left(\begin{bmatrix} ^{13}\text{CO}_2 \end{bmatrix} \frac{\partial p}{\partial z} \right) + \frac{\partial}{\partial z} \left(D_{s,13} \frac{\partial \begin{bmatrix} ^{13}\text{CO}_2 \end{bmatrix}}{\partial z} \right) + S_{13}$$

$$\varepsilon \frac{\partial p}{\partial t} = \frac{K}{\eta} \frac{\partial}{\partial z} \left(\left(p + p_{\text{ref}} \right) \frac{\partial p}{\partial z} \right)$$

 η : air viscosity

K: permeability, determined experimentally for each layer

$$\frac{\partial \left[^{12} \text{CO}_2\right]}{\partial z} = \frac{\partial \left[^{13} \text{CO}_2\right]}{\partial z} = \frac{\partial p}{\partial z} = 0$$

Mathematical modelling

Basic equations + photosynthesis

$$[^{12}CO_{2}]$$
 , $[^{13}CO_{2}]$ from measurements along time

$$\varepsilon \frac{\partial \left[^{12} \text{CO}_{2}\right]}{\partial t} = \frac{\partial}{\partial z} \left(D_{s,12} \frac{\partial \left[^{12} \text{CO}_{2}\right]}{\partial z} \right) + S_{12} + P_{12}$$
$$\varepsilon \frac{\partial \left[^{13} \text{CO}_{2}\right]}{\partial t} = \frac{\partial}{\partial z} \left(D_{s,13} \frac{\partial \left[^{13} \text{CO}_{2}\right]}{\partial z} \right) + S_{13} + P_{13}$$

P: additional consumption rate due to photosynthesis, depending on depth, amount of sunshine and temperature, use of classical laws for soils

$$\frac{\partial \left[^{12} \text{CO}_2\right]}{\partial z} = \frac{\partial \left[^{13} \text{CO}_2\right]}{\partial z} = 0$$

ULB Results and discussion

- Comparison between experimental data and simulations
 - Experimental measurements

ULB Results and discussion

- Comparison between experimental data and simulations
 - Experimental measurements
 - Simulation with diffusion model

Results and discussion

Comparison between experimental data and simulations

- Experimental measurements
- Simulation with diffusion model
- Simulation with diffusion + wind model

Results and discussion

Comparison between experimental data and simulations

- Experimental measurements
- Simulation with diffusion model
- Simulation with diffusion + photosynthesis model

ULB Conclusion

Diffusive model

- Rather good estimation of $F_{\rm CO2}$ and $\delta^{13}[{\rm CO_2}]$ but tending to overestimate $F_{\rm CO2}$ and underestimate $\delta^{13}[{\rm CO_2}]$
- Not predicting the intra-hour fluctuations of $F_{\rm CO2}$ and $\delta^{13}[{\rm CO_2}]$
- Model with effect of wind
 - Lead to simulated intra-hour fluctuations of F_{CO2} and $\delta^{13}[CO_2]$!
- Model with effect of photosynthesis
 - Significant decrease of $F_{CO2} \rightarrow$ better agreement with measurements
 - Lead to moderate intra-hours fluctuations
- COMSOL is a perfect tool for such a study

Thanks for your kind attention

