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INTRODUCTION 

 Microvascularture: Blood vessels < 150 µM 

 Longitudinally arranged single layer of ECs 
surrounded by perpendicular arrangement 
of one or many layers of SMCs 

 Role of Microcirculation: 
 Regulate blood flow  
 Tissue perfusion  
 Regulates blood pressure and responses 

to inflammation   
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SIGNIFICANCE 
 High blood pressure: 1 in 3 adults in US. [1] 

 Almost 3 of 4 patients that experience their first heart attack or 
stroke are hypertensive. [1] 

 Peripheral vascular resistance is increased in virtually all models of 
hypertension and altered arteriolar tone can affect renal function 
and the ability of the kidneys to regulate blood pressure.  
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GOAL 
Complex mechanisms at the molecular, cellular levels participate in 
the regulation of vascular resistance and hence the vessel tone. 

Develop theoretical models to better  understand mechanisms 
modulating Ca2+ and Vm dynamics that regulate vascular resistance, blood 
flow and pressure in health and in hypertension 

 

In particular: Quantification and role localized Ca2+ signals via TRPV4 
channels and localized NO signaling in vessel tone modulation 
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METHODS 
Fitting of current-voltage data for the individual channel 
provides a mathematical description for each channel 
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STEP 1: Ion Channels  
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Endothelial Cell Model: 11 ODEs  solved using Gear’s backward 
differentiation formula method for stiff systems  

Incorporates major channels, pumps and accounts for balance of Ca2+, Na+, K+, 
Cl-, and IP3 

Smooth Muscle Cell Model: 26 ODEs  solved using Gear’s 
backward differentiation formula method for stiff systems  

STEP 2:Single Cell Models 
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 11 Nonlinear ODE   
~ 60 Model parameters 
 Values acquired from RMA-EC, other EC, other cell types 
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EC MODEL SET OF ODEs 
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MICROPROPJECTIONS 

Traditional transmission electron photomicrograph 
(×15,000) of the arterial wall  [5]  
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Schematic of channels and cellular 
components localized in the microprojections  

TRPV4 

eNOS 

Hbα 1. 2. 
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STEP 3: FINITE ELEMENT EC-SMC MODEL 

 Allow to examine spatiotemporal 
changes in Ca2+ and Vm dynamics.  

 To incorporate exact geometries 
of microdomain structures like 
micorprojections and implement 
spatial localization of cellular 
components 
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 COMSOL Multiphysics 
 Membrane Currents 

implemented as boundary 
conditions 

 Electro-diffusion for ionic 
transport 

 Diffusion for second 
messenger 
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RESULTS 
TRPV4 SPARKLET ACTIVITY 

Time =10 ms Ca2+ 
(mM) Time =100 ms Time =200 ms Time =4000 ms 

0.2µm 

EC 
3 µm 

EC 

SMC 

 µΜ peak Ca2+ concentrations locally 
 Activation of IKCa channels 6 µm away 

from TRPV4 channel  
      

IKCaEC50 

RELAXATION OF VESSEL TONE 
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SUMMARY 
 The developed models serves as a tool for assisting 

investigations on the regulation of vascular tone in 
health and disease, and development of rationale 
therapeutic strategies for disease like hypertension. 

 Allows quantification and better understanding of Ca2+ 
dynamics regulation. 

 Activation of single TRPV4 channel can result in few 
mM peak Ca2+ concentrations locally which may result 
in 8-10 mV hyperpolarization of SMC and vessel 
relaxation.’ 

 Localization of eNOS in the vicinity of MP may result in 
NO mediated feedback  during SMC stimulation (i.e. 
PE, NE) 

 Modulation of NO biovailability by Hbα is enhanced by 
the colocalization in the MP 

 RBC perfusion will decrease the ability of Hbα to 
modulate NO levels and μM levels of  EC Hbα are 
required for  a significant modulation of SMC NO 
availability 
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1. TRPV4 
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