

Department of Radiology, Addenbrooke's Hospital, CB2 0QQ

Assessment of the SNR, g-factor and relative B1- fields of Medical Radiofrequency Arrays

COMSOL Conference 2014, Cambridge

18th September 2014

COMSOL CONFERENCE 2014 CAMBRIDGE

Contents of talk

Medical radiofrequency coils

- How are coils used in Magnetic Resonance Imaging?
- Medical need vs. technical requirement
- Examination of existing clinical coils for paediatric MR

Purpose of study

- Assessment of project design ('Swiss Roll' design)
- Role of simulation in coil design and use of COMSOL Multiphysics
- Results
 - Signal to Noise Ratio (SNR); sum of squares and uniform noise images
 - g-factor and acceleration potential

Radiofrequency Arrays in MR Imaging

MR Imaging relies on NMR

- Net magnetic moment created in tissue (Mo) by static B-field
- Momanipulated using RF fields
- When fields removed Mo orientation recovers
- Oscillation of Mo induces a voltage in the coil, tuned to Larmor frequency, ω_0
- Signal localised using gradient fields for each iteration one line of image k-space acquired

Receive Arrays

- Arrays comprise of multiple loops mutual inductance occurs
- Knowledge of coil sensitivities fewer lines of k-space are required, accelerating acquisition

Paediatric Magnetic Resonance Imaging

CT used as gold standard imaging for many diseases

- Increasing concerns regarding radiation exposure during childhood
- Studies show repeated CT significantly increase lifetime cancer risk
- MRI offers advantages over CT
 - Non-ionising radiation
 - Soft tissue distinction lesions, necrosis, appendicitis
- Time and equipment costs
 - Patient must remain still over protracted periods
 - Intubation, sedation and environment control important

Paediatric RF coils

• The appropriate coil for a child is determined by:

- Size and temperament, medical condition
- Sensitivity depth, surface conformity of design
- The adult torso and cardiac coils can be used in some cases, but 'wrap' coils offer more flexibility

Project Design

- Flexible for surface conformity and sensitivity
- Ability to wrap to different positions –accommodate different sizes
- 4x8 channels to enable higher acceleration factors

Role of Simulation in Design

Geometry: Coil and Load

Three coil geometries created

Small flexible coil

- 16 channels
- Can be wrapped to conform to surface
- Critically overlapped
 in both directions

Cardiac array

- 8 channels, partially overlapped
- Rigid former with joints

Project Coil

- 32 channels, overlapped along bore axis
- Swiss-roll, wrapable design

Boundary conditions and Mesh

Tissue Properties

- Simple phantoms contained generic 'muscle' tissue
- Baby model contains 11 age-adjusted tissues

Coil Materials:

- Coil track set as Copper (for materials library) PEC
- Capacitor lumped elements used to tune elements
- Driving port included V0 and Zref adjustable

Meshing

- Tetrahedral mesh specified for sample volumes elements < 2cm
- Swept mesh used at edge of solution volume
- Cylindrical phantom resulted in a mesh an order of magnitude smaller

COMSOL Process I

(1) Element Tuning

• Ensure that the elements are tuned and matched at 63.86MHz

(2) Noise Correlation Matrix, Ψ , Extraction

- Assess the level of cross-talk between elements
- Calculated using COMSOL integration function over the load (sample) volume(s):

$$\Psi_{ij} = \int_{sample} \sigma(r) [E_i(r) \cdot E_j^*(r)] dV$$

(3) Normalisation of coil sensitivities

• Calculated for each element – counterclockwise B-field relative to bore axis

$$B_1^- = \frac{1}{2} \left(B_x - i B_y \right)$$

Result for each element power-normalised in post-processing

COMSOL Process II

(4) Signal to Noise Ratio Calculation

- Clinically it is desirable to maximise Signal to Noise
- Analytically using signal and noise definitions maximum SNR for a loop (radius *R*) found at $r_M = \sqrt{5}R$
- Experimentally, absolute SNR calculations depend on reconstruction method
- Numerically, three ways to assess potential coil SNR:
 - SUM OF SQUARES IMAGE → standard reconstruction, optimal coil field combination for SNR (Roemer *et al.* 1989)

Calculated element-wise in MATLAB using separate coil fields and extracted NCM:

$$S(r) = \left| \sqrt{\sum_{i=1}^{N} \sum_{j=1}^{N} B_{1_{i}}^{-}(r) \Psi_{ij} B_{1_{j}}^{+}(r)} \right|$$

COMSOL Process III

- SNR (con't)
 - ii. UNIFORM NOISE IMAGE → this shows how the sensitivity profile varies over a sample under (ideal) uniform noise conditions.

$$UNI(r) = \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} B_{1i}^{-}(r) \Psi_{ij} B_{1j}^{+}(r)}{\sqrt{\sum_{i=1}^{N} \sum_{j=1}^{N} B_{1i}^{+}(r) \Psi_{ij} B_{1j}^{-}(r)}}$$

iii. ACCELERATION POTENTIAL \rightarrow calculation of the g-factor under different acceleration conditions shows the resultant loss of SNR $SNR_{SENSE,p} = \frac{SNR_{full,p}}{\sqrt{R}a_{p}}$

Calculated in MATLAB using alias maps; each set of wrapped pixels requires a separate calculation:

$$g_p = \sqrt{[(W^H \cdot \Psi^{-1} \cdot W)^{-1}]_{p,p} (W^H \cdot \Psi^{-1} \cdot W)^{-1}}_{p,p}$$

Results I: Signal to Noise Ratio

- Sum of Squares SNR phantom experiments
 - Initial `best guess' coil against closest existing coil
 - Higher potential SNR and greater sensitivity
- Sum of Squared SNR baby model
 - Higher maximum SNR achieved using wrap coil
 - SOS SNR more uniform for project design
 - Larger field of view with higher SNR

Above (left) Flexible 16 channel coil SOS SNR image (right) project 32 channel coil

Coil	Cardiac	Flex	Project
Maximum SNR (phantom)	-	149.74	355.13
Maximum SNR (baby)	5.49	221.61	2933.38
Uniformity of SNR (heart)	1.47	49.63	68.85

Above: SOS SNR maps for (left-right) cardiac, flexible and project coil designs

Results II: Uniform Noise Images

- Uniform Noise SNR phantom experiments
 - Initial `best guess' coil against closest existing coil
 - Wrap coil shows less signal variation but lower values
- Uniform Noise SNR baby model
 - Higher maximum SNR achieved using wrap coil though similar maximum value in heart

Above (left) Flexible 16 channel coil UNI SNR image (right) project 32 channel coil

Coil	Cardiac	Flex	Project
Maximum UNI (phantom)	-	149.74	354.95
Maximum UNI (baby)	5.48	221.74	2931.04
Maximum UNI (heart)	3.01	189.96	181.55

Above: UNI SNR maps for (left-right) cardiac, flexible and project coil designs

Results III: g-factor maps

Inverse g-factor maps

- Initially done for wrap and project coils
- 2x1 wrap and 2x2 acceleration considered on axial slice

Below (left-right): alias map for 2x2 acceleration, corresponding inverse g-factor maps for wrap coil and project coil respectively

This PhD Project has been funded for three years by an MRC CASE Studentship, in collaboration with GE Healthcare.

Department of Radiology, University of Cambridge, UK

- Prof. David Lomas
- Dr. Martin Graves
- Dr. Andrew Patterson
- Dr. Andrew Priest

GE Healthcare Coils, Aurora (OH), USA

Dr. Fraser Robb Dr. Victor Taracila

