Effect of Parallel Strip Water Sources Spacing On Lateral Infiltration Flux

Maria García-Serrana, Civil, Environmental, and Geo-Engineering

John L. Nieber (nieber@umn.edu), Bioproducts and Biosystems Engineering
John S. Gulliver, Civil, Environmental and Geo-Engineering

University of Minnesota
Driven to Discover℠
OVERVIEW

• Introduction

• Previous research review
 • Vertical vs. vertical and lateral infiltration

• Formulation of the problem for numerical solution

• Edge effect in parallel water sources
 • Steady state flow
 • Transient flow (not shown)

• Conclusions
INFILTRATION WITH PARTIAL SURFACE COVERAGE OF WATER

- **Sheet flow**
 - Usual assumption

- **Concentrated flow**
 - 1D-vertical infiltration
 - A lot better assumption

- **Concentrated flow**
 - Vertical and lateral infiltration
 - Even better
VERTICAL AND LATERAL FLOW

\[i_{2D} = i_{1D} + i_{\text{Edge}} \]

- \(i_{1D} \) is the term for vertical flow
- \(i_{\text{Edge}} = \gamma i_{\text{Horiz}} \); term for capillary-driven lateral flow

\[i_{\text{Horiz}} = \frac{S}{x_0} (\theta_H - \theta_n) t \]

- \(\gamma \) is a function of strip spacing, soil texture and time
- The challenge is to determine \(\gamma \)
- We should be able to do this with numerical simulation of the Richards equation

From: Warrick and Lazarovitch (2007), infiltration from a strip source
Numerical modeling

Simulations of two-dimensional infiltration based on numerical solution of the Richards within the porous media module of COMSOL_MP.

Governing equation:
\[
\frac{\partial}{\partial t} (\varepsilon_p \rho) + \nabla \cdot (\rho u) = Q_m \\
 u = -\frac{k}{\mu} (\nabla p + \rho g \nabla D)
\]

subject to:
\[
p(x, y, t = 0) = p_0
\]

Initial condition
\[
\frac{\partial}{\partial n} (p + \rho g D) = 0
\]

\[
\frac{\partial p}{\partial n} = 0
\]

\[p = 0\]
VERTICAL AND LATERAL INFILTRATION

At Steady State

Water free to flow in all directions
MULTIPLE STRIP EDGE EFFECT

At Steady State

Water flow confined due to neighboring strip sources (reduces γ)
MULTIPLE STRIP EDGE EFFECT

At Steady State

![Graph showing Multiple Strip Edge Effect vs. Spacing](image-url)

- **Multiple Strip Edge Effect/Single Strip Edge Effect vs. Spacing**
- **Finer porous media**
- **Spacing of the strips (m)**

Data Points:
- Loamy Sand
- Sandy Clay Loam
- Silty Loam

Legend:
- Coarse gravel
MULTIPLE STRIP EDGE EFFECT

Transient flow

Water sources
MULTIPLE STRIP EDGE EFFECT

Transient flow

Multiple Strip Edge Effect/Single Strip Edge Effect vs. Spacing (t=200s and Steady State)

Spacing of the strips (m)

- Loamy Sand Steady State
- Loamy Sand t=200s
- Loamy sand t=0s
CONCLUSIONS

- The calculation of infiltration from parallel strip water sources depends on:
 - Width of the strip
 - Texture of the porous media
 - Initial moisture content
 - Strip spacing
 - Time (not shown)

- The calculation of infiltration from parallel strip sources can be approximated by using a 1-D approximation with a shape factor (γ) to account for the enhancement of infiltration introduced by the actual 2-D flow. The value of γ can be quantified with numerical solutions to the Richards equation.