

Simulating Organogenesis in COMSOL: Phase-Field Based Simulations of Embryonic Lung Branching Morphogenesis

Lucas D. Wittwer¹, Roberto Croce^{1,2}, Sebastian Aland³ and Dagmar Iber^{*1,2}

¹ETH Zurich, Switzerland,
²Swiss Institute of Bioinformatics (SIB), Switzerland,
³TU Dresden, Germany

D-BSSE Department of Biosystems Science and Engineering

Motivation: Lung Morphogenesis

- Morphogenesis: Creation of Shape
- Lung Branching:
 - High Surface : Volume Ratio
 - Surface of half a tennis court
 - Highly stereotyped
- How is this achieved in vivo?

Metzger et al. Nature (2008)

Iber and Menshykau et al. Open Biol (2013)

Image-Based Simulations

- Image-based Geometry
- Finite Elements with an ALE-approach

Credit to Roberto Croce

- Problem: Complex deformation
 - Numerically not stable!

Image-Based Simulations: Mathematical Model

- Turing Patterns
 - First described by Alan Turing, 1952
 - Dynamic system with two "morphogens"

$$\frac{\partial u}{\partial t} = D_1 \Delta u + f(u, v)$$
$$\frac{\partial v}{\partial t} = D_2 \Delta v + g(u, v)$$

- Stable in the absence of diffusion
- Unstable in the presence of diffusion
- Describes stable patterns observable in nature

Image-Based Simulations: Mathematical Model

Receptor-ligand based Turing Models

$$\frac{\partial \mathcal{R}}{\partial t} = D A \mathcal{R} \Delta \mathcal{H} \mathcal{H}(\mathfrak{a}(\mathcal{U}, \mathcal{R}) + R^2 L)$$
$$\frac{\partial \mathcal{L}}{\partial t} = D A \mathcal{L} \mathcal{L} \mathcal{H} \mathcal{H}(\mathfrak{a}(\mathcal{U}, \mathcal{R}) + R^2 L)$$

- Receptor R on the lung epithelium
- Ligand L in the mesenchyme
- Growth velocity field depends on R²L

 $\vec{v} \approx R^2 L \cdot \vec{n}$

Menshykau et al. Development (2014) Credit to Roberto Croce

Eqs. to solve

$$\frac{\partial R}{\partial t} = \Delta R + \gamma (a - R + R^2 L)$$
$$\frac{\partial L}{\partial t} = d \Delta L + \gamma (b - R^2 L)$$

Growth

 $\vec{v}\approx R^2L\,\cdot\vec{n}$

Mathematical Framework: Phase-Field

- Problem: Complex deformation
- Phase-Field = Scalar Field ϕ
 - Whole domain
 - Continuous
 - Constant in the bulks
 - Differentiable and steep across the diffuse front
- Regular mesh on whole domain
- Controllable
 - Interface thickness ε
 - Interface evolution through velocity field

Mathematical Framework: Phase-Fields in COMSOL

Phase-Field Module

$$\begin{aligned} \frac{\partial \phi}{\partial t} + \vec{v} \cdot \nabla \phi &= g \\ \mathbf{g} &= \nabla \cdot \frac{\gamma \lambda}{\varepsilon^2} \nabla \left(-\nabla \cdot \varepsilon^2 \nabla \phi + (\phi^2 - 1)\phi + \frac{\frac{\varepsilon^2}{\lambda} \partial f}{\partial \phi} \right) \\ \gamma &= \frac{3\epsilon\sigma}{\sqrt{8}} \end{aligned}$$

Parameters

- Surface tension coefficient σ
- Interface thickness ϵ
- Mobility γ

<u>Drawback</u>

Curvature minimizing self-dynamics

Level-Set Module

$$\frac{\partial \phi}{\partial t} + \vec{v} \cdot \nabla \phi = f$$
$$f = \gamma \nabla \phi \cdot \left(\epsilon - \phi (1 - \phi) \frac{\nabla \phi}{|\nabla \phi|} \right)$$

• Interface thickness ϵ

- Re-initialisation parameter γ
- Computationally more expensive

$\frac{\partial R}{\partial t} = \Delta R + \gamma (a - R + R^{2}L)$ $\frac{\partial L}{\partial t} = d \Delta L + \gamma (b - R^{2}L)$ $\frac{\text{Growth}}{\vec{v} \approx R^{2}L \cdot \vec{n}}$ $\frac{\partial \phi}{\partial t} + \vec{v} \cdot \nabla \phi = f$

Eqs. to solve

Phase-Field with Reaction-Diffusion Mechanism and Growth

- R exists on the interface only
 - Multiply with the Dirac delta function $\delta \approx |\nabla \phi|$

 $\delta \frac{\partial R}{\partial t} = \nabla \cdot (\delta \nabla R) + \gamma \delta (a - R + R^2 L)$

- L exists in the mesenchyme only
 - Multiply with ϕ
 - Interaction occurs only on the interface

 $\phi \frac{\partial L}{\partial t} = D \nabla \cdot (\phi \nabla L) + \phi \gamma b - \gamma \delta R^2 L$

Growth in normal direction

$$\vec{v} \approx R^2 L \cdot \vec{a} \frac{\nabla \phi}{|\nabla \phi|}$$

And numerical stabilisation terms

Phase Field

R^2L

Eqs. to solve $\delta \frac{\partial R}{\partial t} = \nabla \cdot (\delta \nabla R) + \gamma \delta (a - R + R^{2}L)$ $\phi \frac{\partial L}{\partial t} = D \nabla \cdot (\phi \nabla L) + \phi \gamma b - \gamma \delta R^{2}L$ Growth

$$\vec{v} \approx R^2 L \cdot \delta \frac{\nabla \phi}{|\nabla \phi|}$$

Phase-Field Eq.

$$\frac{\partial \phi}{\partial t} + \vec{v} \cdot \nabla \phi = f$$
$$f = \gamma \nabla \phi \cdot (\epsilon - \phi(1 - \phi) \frac{\nabla \phi}{|\nabla \phi|})$$

Geometry

$$\underbrace{\text{Eqs. to solve}}_{\delta \frac{\partial R}{\partial t} = \nabla \cdot (\delta \nabla R) + \gamma \delta(a - R + R^{2}L) \\ \phi \frac{\partial L}{\partial t} = D \nabla \cdot (\phi \nabla L) + \phi \gamma b - \gamma \delta R^{2}L \\ \underline{\text{Growth}}_{\vec{v} \approx R^{2}L \cdot \delta \frac{\nabla \phi}{|\nabla \phi|}} \\ \underline{\text{Phase-Field Eq.}} \\ \frac{\partial \phi}{\partial t} + \vec{v} \cdot \nabla \phi = f \\ f = \gamma \nabla \phi \cdot (\epsilon - \phi(1 - \phi) \frac{\nabla \phi}{|\nabla \phi|})$$

Eqs. to solve

$$\delta \frac{\partial R}{\partial t} = \nabla \cdot (\delta \nabla R) + \gamma \delta (a - R + R^{2}L)$$

$$\phi \frac{\partial L}{\partial t} = D \nabla \cdot (\phi \nabla L) + \phi \gamma b - \gamma \delta R^{2}L$$
Growth

$$\vec{v} \approx R^{2}L \cdot \delta \frac{\nabla \phi}{|\nabla \phi|}$$
Phase-Field Eq.

$$\frac{\partial \phi}{\partial t} + \vec{v} \cdot \nabla \phi = f$$

$$f = \gamma \nabla \phi \cdot (\epsilon - \phi(1 - \phi) \frac{\nabla \phi}{|\nabla \phi|})$$

Summary & Conclusions

- Solving Reaction-Diffusion equations on diffuse boundaries with COMSOL is possible
- Complex geometries and displacements can be handled
- Outlook:
 - Make use of adaptive mesh refinement
 - Fine-tune parameters to get similar results as in the ALE-implementation
 - At the moment there is no secondary branching
 - Grow the mesenchyme, too

D-BSSE

epartment of Biosystems

Science and Engineering

Acknowledgments

CoBi group

Dagmar Iber Diana Barac Marcelo Boareto Lisa Conrad Harold Gomez Zahra Karimaddini Christine Lang Odyssé Michos Anna Stopka Jannik Vollmer

TU Dresden

Sebastian Aland

Past group members

Lada Georgieva Tamas Kurics Lisa Lermuzeaux Denis Menshykau Erkan Ünal Roberto Croce

ETH zürich

Thank you for your attention!

Lucas D. Wittwer | 13.10.2016 | 16

Phase-Field with Reaction-Diffusion Mechanism and Growth

Equations

$$\begin{aligned} \frac{\partial R}{\partial t} &= \Delta R + \gamma (a - R + R^2 L) & on \, \Gamma_{\Omega} \\ \frac{\partial L}{\partial t} &= d \, \Delta L + \gamma b & on \, \Omega \\ D \, \vec{n} \, \cdot \nabla L &= -\gamma R^2 L & on \, \Gamma_{\Omega} \end{aligned}$$

 $\frac{\text{Eqs. to solve}}{\delta \frac{\partial R}{\partial t}} = \nabla \cdot (\delta \nabla R) + \gamma \delta (a - R + R^2 L)$ $\phi \frac{\partial L}{\partial t} = D \nabla \cdot (\phi \nabla L) + \phi \gamma b - \gamma \delta R^2 L$ $\frac{\text{Growth}}{\vec{v} \approx R^2 L \cdot \delta \frac{\nabla \phi}{|\nabla \phi|}$ Phase-Field Eq. $\frac{\partial \phi}{\partial t} + \vec{v} \cdot \nabla \phi = f$ $f = \gamma \nabla \phi \cdot (\epsilon - \phi (1 - \phi) \frac{\nabla \phi}{|\nabla \phi|})$

Phase-Field Approach

$$\delta \frac{\partial R}{\partial t} = \nabla \cdot (\delta \nabla R) + \gamma \delta (a - R + \chi(\phi)R^{2}L) + D_{n}\nabla \cdot (\delta \vec{n} \, \vec{n} \cdot \nabla R)$$

$$\phi \frac{\partial L}{\partial t} = D \nabla \cdot (\phi \nabla L) + \phi \gamma b - \gamma \delta R^{2}L \qquad \chi(\phi) = \begin{cases} 1 & \chi_{low} < \phi < \chi_{up} \\ 0 & elsewhere. \end{cases}$$

2D Results: Concentrations of R and L

