A THERMAL STUDY OF POWER CABLES COOLING IN TUNNELS

F. Boukrouche1 (PhD),
C. Moreau1, S. Harmand2, F. Beaubert2, J. Pellé2, O. Moreau3

1EDF R&D, Moret-sur-Loing, France,
2LAMIH-UMR CNRS 8201, University of Lille Nord-de-France, France
3EDF – CIST, Paris, France

E-mail: fahd.boukrouche@edf.fr
SOMMAIRE

I. INTRODUCTION

II. EXPERIMENTAL & SIMULATION SETUP

III. CABLE COOLING : RESULTS & DISCUSSION

IV. IMPACT ON THE MAXIMUM PERMISSIBLE CURRENT

V. CONCLUSIONS
I. INTRODUCTION
 I. Power transmission network
 II. Thermal limiting factor
 III. Simulation challenges

II. EXPERIMENTAL & SIMULATION SETUP

III. CABLE COOLING: RESULTS & DISCUSSION

IV. IMPACT ON THE MAXIMUM PERMISSIBLE CURRENT

V. CONCLUSIONS
I – POWER TRANSMISSION NETWORK

- From energy production centers to the distribution networks, several solutions are available:

Overhead lines:

Buried lines:

Tunnels:

Exemple of London tunnel.
I – THERMAL LIMITING FACTOR

- Principal limiting factor: the dielectric insulation temperature.

- The Joule heating from the transiting current is dissipated through:
 - Conduction in the cables layers.
 - Convection with the surrounding air.
 - Radiation with other surfaces (tunnel walls, other cables, etc.).

- Existing rating methods suffer some limitations such as:
 - All cables are considered identicals.
 - Empirical derating coefficients for groups.
 - Cooling laws not proposed for fully developed turbulent flow.

Ph.D. main objective: Remove the last two issues
I – SIMULATION CHALLENGES

- Tunnels are kilometers long…
 - Long geometries involved

- High aspect ratio between the tunnel and the cables
 - High number of elements for a good mesh quality.

- Need of a Low Reynolds approach for high precision in the computed heat transfer.
 - Even higher number of elements…

- Turbulent flow regime needs a (very) long entrance length.
 - More elements…

![Graph showing heat transfer coefficient evolution with Reynolds numbers Re = 11600 and Re = 26220 over distance z (m).]
I. INTRODUCTION

II. EXPERIMENTAL & SIMULATION SETUP
 I. Ventilated cable tunnel Mock-up
 II. COMSOL use for data treatment
 III. 3D numerical simulations

III. CABLE COOLING : RESULTS & DISCUSSION

IV. IMPACT ON THE MAXIMUM PERMISSIBLE CURRENT

V. CONCLUSIONS
II – VENTILATED TUNNEL MOCK-UP

Measurement section

6.5 m

Inlet

Plexiglas

Test cable

Lx = 1De

Copper

Aluminium

Ceramic
The experimental data are treated with a coupled MATLAB-COMSOL inverse method.

The local Nusselt numbers Nu_i are obtained with an optimization script using two parts:

The COMSOL heat transfer module for the heat transfer resolution.
- 2D geometry.
- Heat conduction in the cables & tunnel walls.
- Surface-to-surface radiation (hemicube formulation).
- Heat transfer coefficient at the cable surface controlled by the optimization process in the MATLAB interface.

The mesh is a very fine one
- Underconstrained model.

Use of an interpolation fonction for the heat transfer coefficient

$\frac{h_{ambient}}{10 \, W.m^{-2}.K^{-1}}$

Iterative heat transfer coefficient

Control point for the optimization method

0.029 m
The local Nusselt numbers Nu_i are obtained with an optimization script using:

- A MATLAB optimization process based on the minimization of the S criterion (1).
 - A second order regularization is chosen.
 - The regulation coefficient β is optimized for each iteration.

$$
S = \sum_{i=1}^{10} (\theta_{\text{comsol}} - \theta_{\text{mes}})^2 + \beta \sum_j (h_{j+1} - 2h_j + h_{j-1})^2 \quad (1)
$$

- The mean Nusselt number is obtained by integration on the cable surface.

$$
\overline{Nu_{De}} = \frac{D_e}{2\pi \lambda (\overline{\theta_s} - \theta_{\text{ambient}})} \int_0^{2\pi} P_{\text{conv}}(\varphi) \, d\varphi \quad (2)
$$

Cooling profile identification process:

- Initial heat transfer coefficient vector h_0 and β_0 value
- Optimization script
 - $h_\varphi = h_{i,\text{opt}}$
 - $\beta = \beta_{\text{opt}}$

LiveLink™ for MATLAB®
- 2D COMSOL simulation with the profil h_φ at iteration $i - 1$
- Extraction of the θ_i and h_i simulated data
- Evaluation of the S criterion (1)

Final result: $h_i = h_\varphi$
The validation case led to a benchmark with the opensource code OpenFOAM and experimental published results.

- Similar results obtained.
- OpenFOAM finite volume formulation preferred to COMSOL for the 3D multi-million mesh elements (cluster availability).
II – 3D NUMERICAL SIMULATIONS

- Simulation RANS using the open source code OpenFOAM.

- Coupled solver and low Reynolds mesh with a turbulence model k-omega SST.

- \(Y^+ << 1 \)
I. INTRODUCTION

II. EXPERIMENTAL & SIMULATION SETUP

III. CABLE COOLING : RESULTS & DISCUSSION
 I. Airflow analysis & cable cooling profile
 II. Mean Nusselt numbers
 III. New cooling laws

IV. IMPACT ON THE MAXIMUM PERMISSIBLE CURRENT

V. CONCLUSIONS
III – AIRFLOW ANALYSIS & CABLE COOLING PROFILE

- As the cable wall spacing decreases, the air flow structure deforms itself.
- A velocity drop is observed in the gap between cable and wall.
III – AIRFLOW ANALYSIS & CABLE COOLING PROFILE

- The observed velocity drop can be down to 50% of the entrance velocity.
- A threshold wall spacing value of $L_x = 2D_e$ can be defined.

![Diagram showing velocity profile line plot at $z = 2.8\,\text{m}$, constrained and unconstrained regions, and cable.]

![Graph showing U_z/U_0 vs. x/L_x for different L_x values.]

- The observed velocity drop can be down to 50% of the entrance velocity.
- A threshold wall spacing value of $L_x = 2D_e$ can be defined.

![Graph showing N_{Re} vs. α for different L_x values.]

$\alpha = 10^\circ$

$Re_{De} = 26220$

$L_x = 5.7D_e, L_x = 2D_e, L_x = 1D_e, L_x = 0.5D_e$

- Experimental $L_x = 0.5D_e$

$Re_{De} = 26220$
III – MEAN NUSSELT NUMBERS

- The depreciation of mean Nusselt number is clearly obtained, with a 20% drop for very close proximity with a wall (Lx = 0.5De).
- Heat transfer 2 times less important as regards to the current cooling law [1].

Possible reasons:
- Turbulence entrance length not reached in [1].
- Studies without support elements (brackets).

\[\bar{Nu}_{De} = 0.13 R_{eDe}^{0.65} \]

I. INTRODUCTION

II. EXPERIMENTAL & SIMULATION SETUP

III. CABLE COOLING : RESULTS & DISCUSSION

IV. IMPACT ON THE MAXIMUM PERMISSIBLE CURRENT

V. CONCLUSIONS
IV – IMPACT ON THE MAXIMUM PERMISSIBLE CURRENT

- Using the design tool for underground power cables with the new laws, the impact on the maximum transmissible current in the power link can be tested.
- Idealized case (no brackets, no corkscrewing effects, etc.)

Max. operating temperature: 90°C in the core

<table>
<thead>
<tr>
<th></th>
<th>Weedy and El Zayyat</th>
<th>$N_u De (L/x/De)$</th>
<th>Weedy and El Zayyat $I = 2354,A$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T core (°C)</td>
<td>89,96</td>
<td>89,97</td>
<td>79,16</td>
</tr>
<tr>
<td>T air (°C)</td>
<td>30,41</td>
<td>28,86</td>
<td>28,8</td>
</tr>
<tr>
<td>h wall (W/m².K)</td>
<td>2,91</td>
<td>2,91</td>
<td>2,91</td>
</tr>
<tr>
<td>h cable (W/m².K)</td>
<td>9,35</td>
<td>3,96</td>
<td>9,37</td>
</tr>
<tr>
<td>I max (A)</td>
<td>2526</td>
<td>2354</td>
<td>2354</td>
</tr>
</tbody>
</table>

- 12%

- 7%
I. INTRODUCTION

II. EXPERIMENTAL & SIMULATION SETUP

III. CABLE COOLING: RESULTS & DISCUSSION

IV. IMPACT ON THE MAXIMUM PERMISSIBLE CURRENT

V. CONCLUSIONS
V - CONCLUSION

- Experimental & numerical studies have highlighted the impacts of the proximity to a tunnel wall and the flow development.
 - The depreciation of the heat transfer can be of 20% for close installations to a wall.

- On-going work.
 - Cable groups effects on the heat transfer (two cables and trefoil configurations).
 - Effects of the support elements.

- Wish list
 - Get rid of the OpenFOAM platform for the 3D ➔ have COMSOL simulate everything.
 - A mean to simulate details local heat transfer for very long geometries with limited mesh elements (ideas ?).
 - Or else, a full COMSOL cluster license…
THANK YOU

ANY QUESTIONS