

Numerical Modeling of Magnetic Field Emissions from a Horizontal Directional Drilling Walk-Over Locating System

Jonas Montoute¹ and Arun Jaganathan*²

^{1,2} Louisiana Tech University *Corresponding author: P.O. box # 10348, Ruston, LA 71272, arun@latech.edu

Presentation contents

- 1. Introduction to HDD
- 2. HDD drill head tracking: A review
- 3. Mathematical description of the model
- 4. Numerical modeling of walk-over locator
- 5. Experimentation
- 6. Validation of numerical results
- 7. Effects of magnetic interference
- 8. Conclusions

Horizontal Directional Drilling (HDD)

Image retrieved from http://www.istt.com/guidelines/horizontal-directional-drilling-hdd

- Popular trenchless method to install buried utilities (water, gas, fiber optic and other utilities)
- First, a borehole is created using a cutting tool, and then the utility to be buried is pulled back through the borehole
- Precise tracking of the drill head is essential to create accurate 'as-built' drawings

Drill head tracking: A review

Techniques used to locate and track a drill head

- Inertial sensors (e.g. accelerometers, gyroscopes)
- Magnetometers that measures the earth's magnetic field
- Wire-line locating systems
- Walk-over locating systems (most popular)

Handheld walk-over locators

- Single axis (SA) receivers
 - O Measures one vector component $(B_x, B_y \text{ or } B_z)$ at a time using a single axis antenna
 - Often it is prone to errors due to 'ghost signals' (false signal peaks)
- Vector sum (VS) receivers
 - Measures all three vector components from which the total field strength is calculated

Mathematical description of the model

A - cross-sectional area of coil

 J_{e} - source current density

 $(j\omega\sigma - \omega^2\epsilon_0\epsilon_r)A + \nabla x (\mu^{-1}\nabla x A) = J_e$

$$J_e = \frac{NI}{A}$$

A - magnetic vector potential

N - number of turns in the coil

I - coil current

A simplified sketch of the numerical model

COMSOL Multiphysics model

- AC/DC module with magnetic fields interface
- Frequency domain analysis (32 kHz)
- Model consists of ~923k elements ranging from 1 mm to 288 mm

Mesh generated from the model: (a) fine mesh for medium surrounding the drill, (b) finer mesh for the drill head, and (c) extra fine mesh for the sonde.

Sample results

Screenshot from COMSOL model showing magnetic field lines emanating from the drill.

Screenshot from numerical model showing B-field in transverse (left) and longitudinal (right) planes around the drill.

- Contour lines generated shows distortion of field close to the drill
- A short distance away from the drill contour lines resemble the field from a solenoid coil

Experimentation

Schematic diagram of the experimental setup

Validation of numerical results

Magnetic flux density transverse to the drill

Walk-over locator operating in an environment with magnetic interferences

A ferrous block located close to a walk-over locator

B vs. distance D

Conclusions

- 1. Numerical modeling of the magnetic field emissions from a HDD walk-over locator was carried out
- 2. Numerical predictions were compared with experimental data and closed-form solutions
- 3. This model could be used to simulate a walk-over locator operating in a noisy real-world environment
- 4. As a example, influence of a ferrous object located near the locator was studied

Thank you

