Solving Time-Dependent Optimal Control Problems in Comsol Multiphysics

Ira Neitzel, Uwe Prüfert, and Thomas Slawig

Problem Setting

Optimal control problems subject to time-dependent partial differential equations are challenging from the viewpoint of mathematical theory and even more so from numerical realization.

Essentially, there are two different approaches to solve such problems.

- "Discretize then Optimize": Transformation of the optimal control problem into a nonlinear programming problem by discretization.
- "Optimize then Discretize": Developing optimality conditions in function spaces that are discretized and solved.
- For certain classes of problems it is possible to derive optimality conditions in PDE form.
- The latter strategy then involves solving systems of PDEs.
- It hence suggests itself to apply specialized PDE software to solve these systems.
- We aim at applying COMSOL Multiphysics for optimization, taking advantage of the built-in routines to define, discretize and solve stationary and timedependent PDEs via the finite element method.
- Time-dependent PDE control problems admit the typical feature of reverse time directions in the PDEs of the

optimality systems.

- This additional difficulty needs to be taken into account when solving these problems numerically.

We consider the optimal control problem (P):

$$
\begin{equation*}
J(y, u)=\frac{1}{2} \int_{Q}\left(y-y_{d}\right)^{2}+\kappa u^{2} d x d t, \tag{1}
\end{equation*}
$$

subject to the parabolic PDE with distributed control

$$
\left.\begin{array}{rl}
y_{t}-\Delta y=u & \text { in } Q \tag{}\\
\partial_{n} y+\alpha y & =g \\
y(t=0) & \text { on } \Sigma \\
y(t) & \text { in } \Omega
\end{array}\right\},
$$

Consideration of boundary control problems also possible.

Theoretical Preparations

Assumption 1. In this setting, $\Omega \subset \mathbb{R}^{N}, N=1,2$, is a spatial domain with sufficiently smooth boundary $\partial \Omega$, $(0, T)$ is a non-empty time intervall, $\Sigma:=\partial \Omega \times(0, T)$, and $Q:=\Omega \times(0, T)$. Moreover, we consider functions $g \in L^{2}(\Sigma)$ and $y_{0} \in L^{2}(\Omega)$ and controls $u \in L^{2}(Q)$.

A short formulation of the model problem with control u and state y then reads

$$
\begin{equation*}
\min J(y, u) \text { subject to }(2) \tag{P}
\end{equation*}
$$

Theorem (Solvability of the state equation) For any triple
$\left(f, g, y_{0}\right) \in L^{2}(Q) \times L^{2}(\Sigma) \times L^{2}(\Omega)$ the initial-boundary value problem

$$
\begin{aligned}
y_{t}-\Delta y & =f \text { in } Q, \\
\partial_{n} y+\alpha y & =g \text { on } \Sigma, \\
y(t=0) & =y_{0} \text { in } \Omega
\end{aligned}
$$

admits a unique solution
$y \in W(0, T):=\left\{y \in L^{2}\left(0, T ; H^{1}(\Omega)\right) \mid y_{t} \in L^{2}\left(0, T, H^{1}(\Omega)^{*}\right)\right\}$.

Theorem (Existence of an optimal solution) Under Assumption 1 and for J defined in (1), and arbitrary $\kappa>0$, the optimal control problem defined in (P) admits a unique optimal control $u^{*} \in U=L^{2}(Q)$.

Theorem (Optimality system) Let $u^{*} \in U=L^{2}(Q)$ be the optimal control of Problem (P) and let y^{*} denote the associated optimal state. Then there exists an adjoint state $p \in W(0, T)$ as weak solution of

$$
\left.\begin{array}{rlrl}
-p_{t}-\Delta p & =y^{*}-y_{d} & \text { in } Q \\
\partial_{n} p+\alpha p & =0 & & \text { on } \Sigma \\
p(t=T) & =0 & & \text { in } \Omega
\end{array}\right\}
$$

and the gradient equation

$$
\begin{equation*}
\kappa\left(u^{*}-u_{d}\right)+p=0 \tag{4}
\end{equation*}
$$

is fulfilled for almost all $(x, t) \in Q$.
More details: [3], [1]

Parts of a COMSOL Multiphysics Script:

fem.equ.f = \{ \{'-ytime+u' 'ptime+y-yd(x1,x2,time)'\} \};
 fem.bnd. $\mathrm{g}=\{\{00\}$ \{0 0\};
\{'g1(x1,time)-alpha*y' '-alpha*p'\} \{'g2(x2,time)-alpha*y' '-alpha*p'\} \};

Table 1: Errors to the 2D example, adaptive solver

We have succesfully applied the finite element package COMSOL Multiphysics to simple time-dependent optimal control problems subject to PDE constraints by utilizing an Optimize then Discretize strategy.

- The introduced strategy works reasonably well for our simple example problems.
- We take advantage of the fact that optimality conditions can be formulated as a PDE.
- The method we use is easily implementable and may well serve as a first step towards optimizing a given goal without the use of specialized optimization routines.
- The approach does not substitute the use of specialized optimization software.
- Elliptic solvers are used for time-dependent parabolic control problems, which may cause instability problems.

References

[1] J. L. Lions. Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, Berlin, 1971.
[2] Ira Neitzel, Uwe Prüfert, and Thomas Slawig. Strategies for timedependent PDE control using an integrated modeling and simulation environment. part one: problems without inequality constraints. Technical Report 408, Matheon, Berlin, 2007.
[3] J. Wloka. Partielle Differentialgleichungen. Teubner-Verlag, Leipzig, 1982.

Contact: Ira Neitzell ${ }^{1, * *}$, Uwe Prüfert ${ }^{2, * *}$, Thomas Slawig ${ }^{2}$.
Institute: ${ }^{1}$ Technische Universität Berlin and ${ }^{*}$ DFG priority program SPP 1253 Optimization with differential equations, **DFG research center Matheon;
${ }^{2}$ Christian-Albrechts-Universität zu Kiel, DFG Cluster of Excellence The Future Ocean, DFG priority progam SPP 1253 Optimization with differential equations
Email: neitzel@math.tu-berlin.de, pruefert@math.tu-berlin.de
ts@informatik.uni-kiel.de
$y^{*}\left(x_{1}, x_{2}, t\right)=\sin \left(x_{1}\right) \sin \left(x_{2}\right) \sin (t)$
$u^{*}\left(x_{1}, x_{2}, t\right)=\sin \left(x_{1}\right) \sin \left(x_{2}\right)(\cos (t)+2 \sin (t))$
$p^{*}\left(x_{1}, x_{2}, t\right)=\cos \left(x_{1}\right) \cos \left(x_{2}\right)(\pi-t)$,

$$
\begin{aligned}
& \left.\left.\begin{array}{rl}
y_{t}-\Delta y=u_{d}-\frac{1}{k} p \\
-p_{t}-\Delta p=y-y_{d}
\end{array}\right\} \text { in } Q, \begin{array}{r}
\partial_{n} y+\alpha y=g \\
\partial_{n} p+\alpha p=0
\end{array}\right\} \text { on } \Sigma \\
& \qquad \begin{aligned}
y=y_{0} & \text { in } \Omega \times\{0\} \\
p=0 & \text { in } \Omega \times\{T\} .
\end{aligned}
\end{aligned}
$$

An example in 2D

The space-time domain is defined by

$$
Q=(0, \pi)^{2} \times(0, \pi) \subset \mathbb{R}^{3}
$$

and the functions y_{d}, u_{d}, and g are given by
$y_{d}=\sin \left(x_{1}\right) \sin \left(x_{2}\right) \sin (t)-\cos \left(x_{1}\right) \cos \left(x_{2}\right)-2 \cos \left(x_{1}\right) \cos \left(x_{2}\right)(\pi-t)$, $u_{d}=\sin \left(x_{1}\right) \sin \left(x_{2}\right) \cos (t)+2 \sin \left(x_{1}\right) \sin \left(x_{2}\right) \sin (t)+\frac{1}{\kappa} \cos \left(x_{1}\right) \cos \left(x_{2}\right)(\pi-$

$$
g=-\vec{n} \sin (t)\left(\sin \left(x_{1}\right), \sin \left(x_{2}\right)\right)^{T},
$$

Moreover, $\alpha=0, \kappa=0.01$ are given.
Optimal solution

Somewhat classical approach: sequentially solving the state and adjoint equation, updating the control in a gradient based optimization algorithm, cf. [2] for an implementation in COMSOL Multiphysics

- Alternative: Treating the coupled optimality system in the whole space-time cylinder by interpreting the time variable as an additional space variable.

Treating the Reverse Time directions by Simultaneous Space-Time Discretization

- Insert gradient equation (4) into state equation
- Interpret Q as spatial domain of dimension $N+1$ with boundary $\Sigma \cup \Omega \times\{0\} \cup \Omega \times\{T\}$
$p^{*}\left(x_{1}, x_{2}, t\right)=\cos \left(x_{1}\right) \cos \left(x_{2}\right)$

