

COMSOL Conf. 2008, Hanover, 4-6 November 2008

Using Perturbation Force Analysis for the Design of a Levitron[©] : an Application of Magnetic Levitation

Z. De Grève^{1,2}, C. Versèle¹, J. Lobry¹

¹Service de Génie Électrique – Faculté Polytechnique de Mons, Bd Dolez, 31 B-7000 Mons
²Fonds National de la Recherche Scientifique F.R.S/FNRS – Rue d'Egmont 5, B-1000 Bruxelles zacharie.degreve@fpms.ac.be, christophe.versele@fpms.ac.be, jacques.lobry@fpms.ac.be

Objective: developing a FEM-based design procedure for the realization of a Levitron[®] in laboratory, using second-hand components. *Issues:*

- > generation and tuning of COMSOL[®] models for available permanent magnets,
 - > perturbation analysis on magnet models, in order to derive a configuration which allows stable magnetic levitation,
- > force computation on magnets from finite element models.

1. The Levitron[©]

> Earnshaw's theorem: no stable equilibrium allowed for static fields,

Levitron[®] : gyroscopic torques maintain the top in nearly vertical alignment (flipping phenomenon)

Stable equilibrium area along z axis

2. Numerical model

AC/DC module - Magnetostatics
 No currents (3D):

$$\Omega: -\mu_0 \nabla (\nabla \psi) + \mu_0 \nabla M = 0$$

$$\Gamma: \qquad \frac{\partial \psi}{\partial \psi} = 0$$

 ∂n (total magnetic scalar potential ψ)

$$B = \mu_0 \left(H + M \right)$$

3. Magnetic component identification

Measurements using a gaussmeter

COMSOL[®] finite element models

ALTERNAL STOLEN STATES

Tuning of M_z to fit simulation results with measurements

4. Perturbation analysis

 (M_1) : rigidly z oriented

 (M_2) : same direction as base magnetic field (flipping motion)

Stability: obtained when axial (*z* oriented) and radial (*r* oriented) excursions of the top around equilibrium are simultaneously compensated by opposite perturbation forces f_r and f_z

Static: magnetic force exerted on the top is balanced by gravitation

$$\vec{F} = \mu_0 \iiint_{\Omega} \left(\vec{M} \, \vec{\nabla} \right) \vec{H} d\Omega$$
 (NUMINT

Three methods:

All nodes displaced « en bloc » (CVW) (based on Virtual Work theorem)

One node displaced at a time

Radial perturbation forces during radial excursions from z axis

(LVW)

UNIVERSITAIR

	Stability Area [mm]	Top mass $[g]$
Our approach (M_2)	62 - 68	22.3 - 22.8
Mag. dipole app. $([1])$	61 - 66	19.7 - 20.3
Exp. results	62 - 68	25.9 - 26.2

> Stability area: in good agreement with experience,

> *Top mass* : better than [1] (integration over entire top), but smaller than experience (measurement errors)

References

[1]: Z. De Grève, C. Versèle, and J. Lobry: « Étude Théorique, Simulation et Réalisation d'un Lévitron à l'aide du Logiciel de Calcul par Éléments Finis Comsol Multiphysics», to appear in *Proceedings of the CETSIS Conf.*, October 2008

FACULTÉ POLYTECHNIQUE DE MONS