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Introduction 
 
Poroelastics combines the fields of hydraulics and 
mechanics. Hydraulics and mechanics are linked in a 
two-way coupling, also referred to as HM coupling. 
Major application fields are ground stability, 
foundation of buildings, waste injection, CO2 
injection and steam assisted gravity drainage. In 
many of these applications gravity has to be taken 
into account.  
 
Studies of poroelastic systems increasingly utilize 
numerical modelling. Especially for geotechnical 
applications models are set up as a tool to understand 
phenomena in porous media that deform due to 
changes of the hydraulic regime, or in which the flow 
field is affected by changes of the stress regime. The 
undisturbed state, which is often used as initial 
condition or for reference, is hydrostatic i.e. shows 
linear pressure increase with depth. Zero is the 
constant value of deformation, the mechanical state 
variable, that corresponds with hydrostatics.   
  
If gravity as outer force is considered, the zero 
deformation does not match with the hydrostatic state 
anymore. For modelling that means that some efforts 
have to be made to find a steady state solution. 
Mostly some pre-runs of the numerical model are 
performed to obtain the solution. Here it is shown 
that an analytical solution provides an alternative 
approach to numerical pre-runs.      
 
Starting from the fundamental descriptions of 
poroelastic systems with HM coupling the analytical 
solution for the geostatic state under influence of 
gravity is derived. Vertical deformation, changing 
with depth following a quadratic regime, matches 
with the hydrostatic state.  
 
The derived solution is valid for a homogeneous 
poroelastic system with constant parameters. Using 
COMSOL Multiphysics it is demonstrated that 
numerical and analytical solutions coincide. We use 
the structural mechanics module of the COMSOL 
product suite. Simulations of the transient 
development show solutions converging to the 
analytical solution.  

 
The solution delivers a formula for the vertical 
deformation, and thus for the shrinking of a 
hypothetical system that was originally not exposed 
to gravity under the influence of the gravity force. 
From this we develop the solution for the inverse 
problem: what is the thickness of a system that is not 
exposed to an outer force, when the thickness of the 
system under gravity regime is given.    

The so derived solution can be beneficial for 
numerical modelling of poroelastic systems under the 
influence of gravity. The analytical solution can be 
used as initial condition. Thus simulations of 
transient developments do not require an artificial 
initialization phase to obtain an approximation of the 
steady state. Also a pre-run for direct solution of the 
steady state, as alternative to transient initialization, 
becomes obsolete.  

Moreover the analytical steady state solution can be 
used as a reference to compare transient deformations 
during the simulation. The presented analytical 
solution simplifies numerical simulations of 
poroelastic systems. An application case was already 
presented by Holzbecher (2014). 
 
Governing Equations and Solutions 
 
The 1-dimensional description of the geostatic state, 
using linear constitutive stress-strain relationship, is 
given by 

  

E 1−ν( )
1+ν( ) 1− 2ν( ) ⋅

∂2 w
∂z2 =α ∂p

∂z
+ ρg  (1) 

with parameters Young modulus E, Poisson ratio ν, 
the Biot or Biot-Willis coefficient α, density of the 
fluid/solid porous system ρ and acceleration due to 
gravity g. The dependent variable w is the 
deformation in vertical direction. z is the spatial 
variable in vertical direction, opposite to the direction 
of gravity. In the coupled poroelastic system the 
variable of pore pressure p is determined also by the 
hydraulic regime. The mathematical description of 
the hydraulic regime is derived from Darcy’s law and 
the principle of mass conservation – for details see 
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for example: Wang (2000) and Ingebritsen et al. 
(2007).  

It is assumed that the solution for the mechanical 
steady state is connected with the hydrostatic 
solution, given by:  

 
 
p = −ρ f gz  (2) 

with fluid density 
 
ρ f . Introducing this into equation 

(1) yields:  

 
  

E 1−ν( )
1+ν( ) 1− 2ν( ) ⋅

∂2 w
∂z2 = −αρ f + ρ( )g  (3) 

As it is further assumed here that all parameters are 
constants, the solution w of eq. (3) is a quadratic 
function of z. As boundary conditions are required: 

 w(0) = 0  and ∂w
∂z
(H ) = 0  (4) 

where z=0 denotes the base of the modelled layer and 
H it’s thickness in a system without gravity. With 
conditions (4) the solution reads: 

  
w(z) =

1+ν( ) 1− 2ν( )
2E 1−ν( ) −αρ f + ρ( )gz z − 2H( )  (5) 

The maximum deformation is given at the top of 
layer, i.e. the absolute value of w(H ) :  

 
  
wmax = −

1+ν( ) 1− 2ν( )
2E 1−ν( ) −αρ f + ρ( )gH 2  (6) 

Lets define H0 as the height of the deformed steady 
state under the influence of gravity. In contrast H 
represents the thickness of the layer in a hypothetical 
environment without gravity. The two heights are 
connected by the formula:  

  H = H0 + wmax  (7) 

Combining equations (6) and (7) a quadratic equation 
for wmax is obtained: 

wmax = − 1
2 A(H0 +wmax )

2  (8) 

with  

A =
1+ν( ) 1− 2ν( )
E 1−ν( ) −αρ f + ρ( )g  (9) 

The solutions of equation (8) are:  

wmax =
1− AH0

A
±

1− AH0( )2
A2

− H0
2  (10) 

Only the negative sign in front of the square root 
gives reasonable solutions. This is a rough outline of 
the derivation presented in more detail by Holzbecher 
(2017). In that publication Holzbecher also deals with 
the more complex case of a system of horizontal 
layers. This contribution treats the single layer 
situation only and the focus lies on the limitations of 
the presented approach with respect to the given 
parameters.   
 
Utilization in Numerical Modeling  
In most application studies of poroelastics the 
considered porous medium reacts to a changed 
geomechanical or hydraulic regime, the forcing, and 
approaches another steady state if the changed 
conditions persist. In such simulations the initial 
condition is of concern, which is a steady state that 
has developed within the system without the outer 
forcing.  

If gravity is not taken into account the steady state is 
given by zero deformation and hydrostatic pressure. 
This can be used as initial state. But the same simple 
state is not valid, if gravity is considered. Then the 
initial state corresponding with hydrostatic pressure 
is a nonzero vertical deformation. More precisely it is 
a quadratic function of depth, as shown above. Its 
exact formula depends on the hydraulic and 
geomechanical parameters.  

Modellers of the transient states as described, may 
thus follow one of three strategies:  

(1) In the simulation they use an initialization period, 
in which the numerical model approaches the 
‘natural’ steady state. Nopper et al. (2012) follow 
such a strategy using a transient pre-run.  

(2) They use a pre-run solving for the steady state. 
The solution of the pre-run is stored and then utilized 
as initial condition for the transient simulation runs. 
Examples for such stationary pre-runs can be found 
in the publications of Altmann (2010) and Chamani 
(2013).  

(3) The analytical solution derived above can be used 
as initial condition. 

If applied correctly all three strategies provide the 
same solution. However, there are advantages and 
disadvantages concerning the options. The initial 
time period in (1) does not reflect the physical 
behaviour of the system, because the initial condition 
of the numerical run is artificial. The length of the 
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initialization period is not known, but must be long 
enough to ensure that the steady state is sufficiently 
good approximated. It may require several runs to 
determine an appropriate length of the initialization 
period. The results of the pre-run in (2) have to be 
stored in a form that is available and easily accessible 
to further model runs. This can be done using most 
commercial software products. However, it is a rather 
expensive way to store a 1D profile of deformations 
in a 2D or 3D array. More important is that the pre-
run has to be designed properly. For a relevant steady 
state it may not be sufficient to only omit the outer 
forcing terms. Also conditions at vertical boundaries 
may have to be changed to roller conditions to allow 
the entire model to reach a steady state. In order to 
circumvent these problems, the application of 
strategy (3) may be an alternative.  

All mentioned strategies deliver the deformation for a 
thickness H that would hold for the layer system if 
gravity is neglected. The height of a system, which is 
obtained from measurements, however has developed 
under the influence of gravity (H0). In order to obtain 
the corresponding initial thickness H (formula (7)) 
that has to be used in modelling, the three strategies 
can be extended. For the mentioned pre-run methods 
several trial and error runs can be applied to obtain an 
H, for which the corresponding H0 is sufficiently 
good approximated. Using the derived analytical 
solution, H is obtained using the combined equations 
(7) and (10):  

   H = 1
A
±

1− AH0( )2
A2

− H0
2  (11) 

No extensions and additional model runs are 
necessary. The obtained value H has to be used as 
layer thickness.  

One example is shown to illustrate the methodology. 
Figure 1 shows simulated deformation profiles, 
modelled using COMSOL Multiphysics. The 
poroelastic mode was used to model the transition 
from an initial unstable state to the steady state, 
which is given by the analytical solution, equation 
(5). Gravity was considered here as active.  
Vertical displacement is shown on the y-axis against 
height above base on the x-axis. Negative values 
indicate deformation in direction of gravity.  Starting 
from zero at the fixed base of the deforming layer the 
absolute values of deformation increase with arc 
length. The legend depicts time instants, for which 
curves are depicted. Dots indicate the analytical 
solution.   

The total depth of the system is 3 m, and the 
deformations to are very small (<5�10-6 m). The 
legend shows times [s] of the transitional states.   
 

 
Figure 1. Transient development towards the steady state, 
given by the derived analytical solution (shown by circles) 
 
Parameter Range Examination 
 
Note that the deformation w in a consolidated system 
is negative if the vertical space axis is counted 
positive upwards. Because the last term in equation 
(5) z-2H is negative, all leading terms in the equation 
should be positive. This condition gives some 
limitations concerning the parameter space.  

The density term -(αρf+ρ) is not problematic as the 
density of the porous system ρ=θρf+ρb is bigger than 
the fluid density (ρb denotes the bulk density). The 
coefficient α<1 even reduces the smaller term. 

The three terms including the Poisson ratio provide a 
positive value, at least for the most important range 
of Poisson ratios 0<ν<0.5. Figure 2 depicts the value 
of the three factors including ν in formula (6) 
combined, i.e. the function 

 
1+ν( ) 1− 2ν( ) / 1−ν( ) .   

 ν 
Figure 2. The combined effect of the terms including the 
Poisson ratio on the maximum deformation  

 

Excerpt from the Proceedings of the 2017 COMSOL Conference in Rotterdam



For low values of ν the shown function lies near to 1 
and decreases rapidly towards 0 for ν>0.25.  

In order to further study the limits of the given 
approach concerning the included parameter, a 
reference parameter set is defined. The values are 
given in Table 1. These values are used, if not noted 
otherwise. With these parameters for A the value of 
1.43�10-5 is obtained.  
 

Table 1: Reference parameter set 
 

Parameter Value 
[unit] 

Parameter  Value 
[unit] 

Young 
modulus E 

100  
[MPa] 

Biot 
parameter 
α 

1 

Poisson 
ratio ν 

0.25 Porosity θ 0.25 

Fluid 
density 

 
ρ f   

1000 
[kg/m3] 

Gravity 
accelera-
tion g 

9.81 
[m/s2] 

Bulk 
density  ρb  

2500 
[kg/m3] 

Thickness 
H 

3000 [m] 

 
For the reference parameter set Figure 3 shows the 
maximum deformation relative to the initial height 
H0, according to formula (10).  Minimum geostatic 
thickness was chosen as 1. If the thickness H0 
exceeds the maximum depicted value, 3500 m, the 
radicants in equations (10) and (11) become negative 
and the square roots become imaginary and there 
exist no non-imaginary solutions anymore. The limit 
is obviously given by the condition  

    (12) 

The maximum deformation wmax must be smaller than 
the height H0, or wmax/H0<1. The maximum 
deformation cannot exceed the layer thickness. 

 
Figure 3. Maximum deformation (normalized) in 
dependence of thickness H0 for the reference parameter set 

 
Figure 3 shows, that for higher values of the geostatic 
thickness the relative maximum deformation 
increases. In fact it increases both in absolute and 
relative values. Moreover, the graph shows that the 
solution delivers reasonable values for layer 
thicknesses up to 3500 m. Thus the derived solution 
obviously delivers appropriate values for real 
geological applications because this value will hardly 
be exceeded in any application.  
 
Figure 4 depicts the relative deformation wmax/H0 in 
dependence on initial thickness H for three different 
values of ν. All other parameters are selected 
according to the reference case parameter list, 
presented in Table 1. On the abscissa the thickness of 
the layer is depicted, which ranges up to 12 km. This 
value is in the range of the thickness of the earth 
crust, and surely exceeds values of practical interest. 
Graphs for three different Poisson ratios are 
presented, which show the relative maximum 
deformation, as already described in the explanation 
of Figure 3. 

 
Figure 4. Maximum deformation (normalized) in 
dependence of thickness H0 and Poisson ratio ν  
 
For increasing values of ν the relative maximum 
deformation decreases. Correspondingly the limit of 
applicability of the derived approach is reached for 
higher values of H0. As could be expected from the 
findings of Figure 2, the deviances are small for low 
values of ν and higher for values near the upper range 
of ν=0.5. 

  2AH0 = 1

Excerpt from the Proceedings of the 2017 COMSOL Conference in Rotterdam



 
Figure 5. Maximum deformation (normalized) in 
dependence of thickness H0 and Young modulus E  
 
In Figure 5 the effect of the Young modulus is 
visualized similarly to Figure 4. The figure shows 
that with increasing value for E the relative 
deformation is decreasing. Correspondingly the limit 
of applicability, where wmax/H0 becomes unity, is 
reached for higher geostatic thicknesses. For the 
highest Young modulus (E=4�108 MPa) that limit is 
reached for a layer thickness of 14 km; for the 
medium Young modulus the corresponding value is 7 
km, and for the lowest (E=108 MPa) it is 3.5 km.  
 

 
Figure 6. Maximum deformation (normalized) in 
dependence of thickness H0 and porosity θ  

 
In Figure 6 the effect of porosity is visualized 
similarly to Figures 4 and 5. The figure shows that 
with increasing value for θ the relative deformation is 
increasing. Correspondingly the limit of applicability, 
where wmax/H0 becomes unity, is reached for lower 
geostatic thicknesses.  
 
Conclusions 
 
An analytical solution was derived for the geostatic 
steady state under influence of gravity. The formula 
delivers a deformation profile that correspondents 

with the hydrostatic profile of pore pressure. We 
extending the study to deliver expressions, 
connecting the height of an unconsolidated layer 
without action of gravity, maximum deformation and 
the thickness of a layer, consolidated under the 
influence of gravity.    
 
The presented formula can be utilized for various 
purposes, such as 

¡ analytical solution for steady states 
¡ initial state in unsteady simulations 
¡ boundary condition at vertical edges 
¡ comparison of steady states 
¡ comparison of steady and unsteady states 
¡ benchmark for code developers 

 
It was shown that the proposed approach using the 
derived analytical formula is valid for the usual 
parameter range of real geological applications.   
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