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The key components of a micromachined pressure sensor
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1. Pigzoresistivity
2. capacitance
3. Optical tech

4. Resonant tech

5. Pigzoglectricity

A micromachined
silicon diaphragm
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The plastic deformation results from the crystallographic slip of the dislocation.
Initial stage: dislocation density governs plastic shear strain rate
(Alexander and Hassen’s model)

Later stage: slip resistance governs the plastic shear strain rate

Objective: simulate the load-deflection behaviour of silicon
diaphragms at elevated temperatures (>600°C) using
constitutive equations proposed by Alexander and Hassen.
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Process flow

Silicon zubstrate Silicen 2ubatrate

(a) a prime silicon wafer was first eiched (c) The handle layer and the silicon dioxide

by deep reactive 1on etching (DRIE) in layer of the BESCOI wafer were removed

order to form the cavity using KOH and HF wet etching separately
Handle layer

Cavity in vacuum

Silicon zubstrate

. Silicon droxide layer . Cevice layer

(b) The prime silicon wafer was bonded Cavity
with a BESOI wafer using silicon fusion

bonding Silicon substrate
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Before annealing —> Annealing C—> After annealing

Measure surface Measure surface
profiles of the test profiles of the test
samples under samples again under

atmospheric pressure
at room temperature.

atmospheric pressure
at room temperature.
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900°C (1173K)

SDL‘PCl/H \>| 6800°C
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Alexander and Hassen’s model

6. The total strain rate:

o pel | s th 4. The viscoplastic strain rate tensor:
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1.The plastic shear strain rate: l

1/m
Y’ = pbv, exp(—Q/kT)(Teﬁ ] sign(,,)
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3. The evolution equation for
dislocation density
p= (

2 2. The effective stress;v

s e, =y
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PDE general form PDE general form Stress-Strain
mode 1 Mode 2 application mode
(Dislocation density) (Viscoplastic strain) (Total displacement)
\_ DN DN /




CoOMSOL :ﬂs.e
CONFERENCE .

MILAN | 4. Use Of COMSOL MultiphySiCS LN "I-'.{HI'I"I’”}

BIRMINGHAM

Atmosphenc pressure

4 0 2 401
E Young’s modulus E 151.3e9[Pa]

/ Poisson’s ratio % 0.1615
Silicon diaphragm tho 2329[kg/m"3]

Silicon substrate Density

Isotropic elastic properties

Viscoplastic properties

Boltzmann's constant Kk 1.38e-23[J/K]
Burgers vector magnitude b 3.83e-10[m]
Initial dislocation density Py 2e7[1/m"2]
reference dislocation velocity v, 6.5e3[m/s]
activation energy Q 3.47e-19[J]
strain rate sensitivity parameter m 0.9

shear modulus U 64e9[Pa]
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Von Mises effective stress of the diaphragm
under the atmospheric pressure before
annealing (radius=1.75mm)

The dislocation density distribution after
annealing (radius=1.75mm)

Max: 7.145e8

104 Max: 123368

x10®

104

x0°

1.z

o 0.z 0.4 0.6 0.5 1 1.z 1.4 1.6 1.3 16 162 1.64 1.66 1.63 1.7 1.72 1.74 1.76 1.78 18
w03 Min: 1,993e7 wp?  Min 6.89%4

*The dislocation multiplication rate is very low at the region close to the middle
plane of the diaphragm.

*The maximum dislocation densities results from the stress concentration at the
round corner
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The dislocation density distribution after annealing at the region near the diaphragm edge (deformed
geometry)

| (a) Radius=1.5mm i (b) Radius=2mm /| (¢) Radius=2.5mm
|
|

s |
»..|

*The larger the diaphragm radius, the larger the

maximum dislocation density is.

*For the diaphragm with a radius of 2.5mm, the
dislocation density becomes negative at the region close
to the middle plane (indicated by the blue colour) . The
convergence problem is caused by the highly non-linear s
material properties. Since the stress near the middle plane Negjtive dislocation density
is very low , the dislocation density at the blue region
should be very close to the initial value.

Radius=2.5mm
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The maximum displacement with annealing

: . The surface profile shows the maximum
time (Radius=1.75mm)

displacement is 10.45um before annealing

Maximum displacement {pm}

14Temperature ...... .................................... ...... Temperature
-1 o1 O A _i.famp down _

16 ............ ........... i ..... - ............ i ........ ____________ __________ The surface profi|e shows the maximum
4 ............ ........... ...... E ..... ............ ............ i ........ ____________ __________ ] displacement is 18.29 um after annea"ng
-180 D.Il D.I2 D.I3 D.I4 D.IS D.IEv D.I? l D.IB D.IQ 1I 11

win®

*The initial displacement is induced by the
atmospheric pressure.

*The creep process is much faster at 1173K
(900°C) than that at the temperature ramp.
*The simulated maximum displacements are
close to the measured values.
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The comparisons of experimental data and model prediction for the diaphragm displacement

Radius of Diaphram (mm)
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*The simulated deformations before annealing are close to the measured data for all the

diaphragm radius.

*The simulated deformations after annealing are close to the measured data for the

diaphragms with a radius of 1.5mm, 1.75mm and 2mm.

*Because the effect of the dislocations interaction on the plastic deformation is not included
in the model, the predicted maximum displacement of 318.19um is much larger than the
measure data of 110 um for the diaphragm with a radius of 2.5mm.
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Conclusions

The mechanical behavior of micromachined silicon diaphragms at 900°C in
the initial deformation stage was simulated using AH model.

The model assumes that the material properties are homogenous.

The dislocation density distribution and the diaphragm displacement are
obtained.

The results show that the predicted displacements are in agreement with the
measured data for the diaphragms with a radius of 1.5mm, 1.75mm and
2mm.

The model neglects the slip resistance caused by the interaction of the
dislocations. So it is not valid for the diaphragm with a radius of 2.5mm

Future work

Compare the predicted dislocation density with the measured data.
Apply AH model to each slip system of single crystal silicon.
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