多场耦合下煤层气在孔裂隙中的运移特征模拟

武天帅¹, 祐文彬², 彭瑞东²

1. 力学与建筑工程学院,中国矿业大学(北京),北京

2. 煤炭资源与安全开采国家重点实验室,中国矿业大学(北京),北京

简介

研究揭示煤层气在煤岩孔裂隙中的渗透流动以及吸 附解吸规律对于煤层气资源开采以及瓦斯防治有着重要 的意义。借助 COMSOL 软件构建了煤岩孔裂隙双重介质 模型,其中孔隙介质部分采用固体力学模块、自由和多 孔介质流动模块、多孔介质稀物质传递模块用三个物理 场叠合在一起构成,裂隙部分采用自由和多孔介质流动 模块、稀物质传递模块用两个物理场叠合在一起构成, 孔隙介质与裂隙之间的交界面传递流体压力与速度,并 发生吸附解析引起物质浓度变化。通过自定义域内材料 参数,将各物理场联系起来,实现了流体流动、固体变 形、物质扩散以及吸附解析之间的多场耦合,模拟了不 同裂隙形态下煤层气在孔裂隙中的运移过程。数值模拟 结果给出了孔裂隙煤岩内的流场分布、应力应变场分布 和物质场分布。进一步利用边界线上的积分计算,求出 了煤岩裂隙出口处的流速、通量、浓度,从而定量揭示 了裂隙形态对煤层气运移的影响规律。当前研究表明, 在裂隙总面积一定的情况下,形成单条宽裂隙要比多条 窄裂隙更利于煤层气运移,这为深入认识煤层气在孔裂 隙中的运移特征提供了新的视角。

关键词: 多场耦合 数值模拟 裂隙特征

引言

煤层气是贮存在煤基质中的烃类气体,以前常被称 为煤矿瓦斯,是井下煤碳开采过程中极其危险的因素。 但同时煤层气也属于一种非常规天然气资源,是非常重 要的能源。加强煤层气(煤矿瓦斯)抽采利用,既是预 防煤矿瓦斯事故的治本措施,也有利于减少温室气体排 放、增加清洁能源,对优化我国能源结构、促进节能减 排具有重要意义^[1]。

煤层气主要是吸附在煤基质颗粒外表面,也有少部 分游离于煤孔隙、煤块体裂隙中或溶解于煤层水中。因 此通常将煤岩基质表征为双重孔隙或孔裂隙模型^[2,3]。 煤岩的孔裂隙结构是煤层气运移扩散的重要通道。随着 煤层气排采的进行,煤储层所承受的应力一定会发生相 应变化,这就会导致煤储层骨架发生变形,从而引起孔 隙率发生变化,所以煤储层孔隙内气体压力也会随之发 生变化。煤储层孔隙内气体压力的变化会引起煤层气吸 附量发生变化,并且会引起煤岩骨架所受有效应力发生 改变,由此引起的煤岩特性发生了变化;同样的,这些 变化又会反过来影响煤层气的流动和煤层气压力的分布。 所以,为了使煤层气流动理论的研究更符合实际,必须 考虑煤岩体与煤层气的多场流固耦合^[3+6]作用。

针对煤岩体中煤层气运移的流固耦合问题,一方面 许多学者基于传统渗流理论对进行了唯象模拟与研究, 给出了一些理论公式或经验公式,另一方面也借助数值 模拟手段进行了分析计算,探讨了各种规律和影响因素。 COMSOL 有限元软件具有强大的多物理场耦合析功能, 使其成为数值模拟的一种重要工具。围绕孔隙介质中的 渗流问题,借助 COMSOL 分析计算已经得到了很多有价 值的结果^[5-7]。本文将在流场和固场的基础上进一步加 入物质场,考虑扩散及吸附效应,探讨裂隙形态对煤层 气运移的影响规律。

数值模型

煤岩中的孔裂隙结构是十分复杂的,具有跨尺度、 不规则、高度随机等一系列特点。在研究中需要抓住一 些主要因素,由简到繁逐渐展开研究。这里假定岩石孔 隙是均匀分布的,而且在一小段范围内裂隙近似为平直 的。因此建立图1所示的二维数值计算模型来作为多场 耦合特征模型进行研究。该特征模型表示沿压力梯度方 向的一个代表性单元体。作为简化,只考虑裂隙平行于 该压力梯度方向这种情况。在实际工程中,常常采用水 压致裂法,会产生较多的裂隙,裂隙数量对煤岩基质中 煤层气的产出的影响是否有,以及影响程度的多少,值 得去探讨。尽管也可以借助数字图像技术建立具有复杂 裂隙分布的计算模型,但其边界条件过于复杂,不易设 置,也无助于探讨关键影响因素。而借助该模型,基本 可以初步表征不同裂隙形态的影响,为后续复杂模型的 模拟奠定基础。

图1. 几何模型示意图

模型尺寸宽为10cm,高为7cm。水平裂隙长度均为 8cm,垂直裂隙高度均为5cm。裂隙宽度与裂隙条数有 关,以保证裂隙总面积不变。一条水平裂隙时宽度为 10nm,两条时分别为5nm,以此类推,四条时分别为 2.5nm。孔隙介质部分采用固体力学模块、自由和多孔 介质流动模块、多孔介质稀物质传递模块用三个物理场 叠合在一起构成,裂隙部分采用自由和多孔介质流动模 块、稀物质传递模块用两个物理场叠合在一起构成,孔 隙介质与裂隙之间的交界面传递流体压力与速度,并发 生吸附解析引起物质浓度变化。

压力梯度沿水平方向,均设为 100Pa/mm。这里不 讨论压力水平的影响,因此统一设左侧为入口压力 1000Pa,右侧出口压力为零。另外这里模拟的是拟一维 流动,主要考虑沿压力梯度方向的流动,忽略垂直于压 力梯度方向的流动。 固体场左右边界为辊支撑,约束了其在水平方向的 位移,以保证沿水平方向整体压力梯度始终为 100Pa/mm。上下边界为自由,与裂隙的接触面上承受流 体压力,另外将裂隙与煤岩基质接触的四个角点设为固 定约束,以便让煤岩基质能够发生变形,但又不产生刚 体位移。

流体场在煤岩基质上为达西渗流场,在裂隙中假定 为层流,统一采用自由和多孔介质流动模块。上下边界 为壁面,左侧边界给定入口压力,右侧边界裂隙出口压 力为零,右侧固体边界设为壁面,以模拟煤层气从左侧 向右侧裂缝出口处的拟一维流动。

为了考虑扩散和吸附的影响,煤岩固体基质部分采 用多孔介质稀物质传递模块模拟,裂隙流体部分采用稀 物质传递模块模拟。上下边界设为无滑壁面。左侧边界 入口浓度设为10m01/m³。固体孔隙介质与裂隙的接触面 为两个模块的交界面,对于多孔介质稀物质传递模块是 流出,对于稀物质传递模块是入口,浓度设为多孔介质 稀物质传递模块的浓度减去其吸附浓度。裂隙右侧边界 为出口。

对于孔隙介质部分,将其孔隙率 ep 设为固体场体 应变 evol 的函数,即:

$$e_{p} = \frac{e_{0} + e_{vol}}{1 + e_{vol}} \tag{1}$$

其中 e_0 为初始孔隙率,并将渗透率 k 也设为体应变 e_{vol} 的函数,即:

$$k = \frac{k_0}{1 + e_{vol}} \left(1 + \frac{e_{vol}}{e_0} \right)^3$$
(2)

其中 ko 为初始渗透率,这就将流体场与固体场耦合起来。另外在物质场中设定传输速度等于流场的速度,从 而将流场与物质场耦合起来。并设定扩散系数为:

$$D = D_0 \cdot \frac{e_0 + e_{vol}}{1 + e_{vol}}$$
(3)

其中 Do 为初始扩散系数,从而将固体场与物质场耦合起来。

表 1. 材料参数			
弹性模量	1GPa	煤基质孔隙率	0.03
泊松比	0.3	初始扩散系数	1.0×10 ⁻⁹ m ² /s
煤基质密度	1400kg/m ³	初始渗透率	$1.0 \times 10^{-10} m^2$
煤层气密度	0.716 kg/m ³	煤层气粘度	1.084×10 ⁻⁵ Pa·s

模型中的材料参数如表1所示。煤岩基质假定为线 弹性材料。煤层气假定为不可压缩流体。暂不考虑温度 的影响。

仿真结果

通过数值模拟,可以得到在不同裂隙条数下煤岩基 质的变形情况和应力分布情况,煤层气的压力分布情况 和速度分布情况,以及煤层气浓度和总通量的分布情况。 这些分布云图给出了多场耦合下煤层气在孔裂隙中运移 的特征,可以形象直观地展示达到特定平衡态后各个物 理场的分布规律。

图 2. 第一主应力分布图

图 2 所示为两条及三条裂隙时的固体场变形以及 第一主应力分布情况。从图中可以看出,煤岩基质的应 力对称分布,上下两边煤岩基质在裂隙中流体压力作用 下,朝外变形,中间裂隙因为双向的压力作用,使其裂 隙宽度变小,改变了其中流体有效流通宽度,因此平行 裂隙条数增加,在一定程度上会造成煤岩基质内部有效 的流通路径变小,这将阻碍煤层气在其内部的运移,从 而影响煤层气的流出速度和浓度。另外可以看到在裂隙 前端有着明显的应力集中现象,拉应力显著增大,这就 有可能导致裂隙发生扩展,进而影响整个裂隙缝网的形 态和连通性。

图 3 所示为两条及三条裂隙时的流体场水平速度 分布情况。从图中可以看出,煤层气的流动主要发生在 裂隙内,煤岩基质内部流体的流动速度较小。这是因为 在煤岩基质内为达西渗流,而当前压力梯度并不很大, 煤基质渗透率也较低所导致。仔细比较后可以发现,中 间裂隙中的速度要比上下两条裂隙中的速度小一些,这 是因为中间裂隙受到挤压而逐渐闭合。

图 4 所示为两条及三条裂隙时煤层气在水平方向 的总通量分布情况。从图中可以看出,煤层气的扩散通 量主要是在裂隙内以及裂隙前端的基质内,与当前压力 梯度方向一致。另外,在裂隙面积占总煤岩基质面积一 定情况下,随着平行裂隙条数的增多,出口处通量有增 大的趋势。

图4水平方向总通量分布图

图 5 所示为煤层气浓度的分布情况。从图中可以看出,煤层气在煤基质和煤裂隙中的浓度差异较大,这是因为煤基质对煤层气的吸附作用使得一部分煤层气无法 渗透到煤裂隙中。另外图中所示煤基质中的浓度基本一 致,煤裂隙中的浓度也基本一致,这是因为当前模型尺 度不大,而煤层气扩散系数又较大,所以达到平衡后基 本没有浓度差。

图 6 所示为煤基质中吸附的煤层气浓度分布情况。 从图中可以看出,吸附浓度分布规律与压力梯度分布基 本一致。这表明在压力较大时,吸附能力也较强。

分析讨论

借助 COMSOL 软件的后处理功能,对裂隙出口截面 的流速、浓度进行线平均函数计算,可得到出口截面的 平均流速和平均浓度;对裂隙出口截面的总通量进行线 积分函数计算,可得出口截面的平均流量。计算结果如 图7到图9所示。

图 7.不同平行裂隙数量下出口速度关系图

从不同裂隙数量下出口速度关系图可看出,随着煤 岩基质内部的裂隙数量的增加,煤岩裂隙出口处煤层气 的流速是逐渐减小,变化趋势呈现出先快后慢的表现规 律。这是因为,当煤岩内部裂隙的宽度值大小越小时, 流体在流动过程中对煤岩基质边壁产生作用力,使煤岩 基质产生了一定大小的应力、应变,这将造成煤岩内部 流体煤层气有效的流通路径渐渐减小,增大了煤层气流 动所受的阻力。

图 8. 不同平行裂隙数量下出口浓度关系图

从不同裂隙数量下出口浓度关系图可看出,随着裂 隙数量增多,出口处浓度逐渐减小。这与裂隙增多后煤 岩基质中应力增大,孔隙压力增大,从而导致煤岩基质 吸附能力增强有关,另外与裂隙增多后煤层气速度下降 有关。因此在工程抽采煤层气、油气等资源时,当裂隙 面积与总面积比例一定,且裂隙长度一定时,应尽可能 的形成一条主裂隙,这样有助于增加出口浓度值。

图 9.不同平行裂隙数量下出口通量关系图

从不同裂隙数量下出口通量关系图可看出,随着裂隙数量的增加,出口通量逐渐降低。这是因为在入口压 力和浓度一定的情况下,随着裂隙数量增多,煤岩基质 对煤层气的阻碍因子变大,溶质的速度也逐渐减小,被 煤岩基质吸附的煤层气增多,导致煤岩裂隙出口的浓度 降低,所以出口处煤层气的通量也随之减少。

结论

借助 COMSOL 多物理场仿真软件,可以模拟多场 流固耦合下煤层气在煤岩孔裂隙结构中的渗流、扩散、 吸附等运移过程,为系统研究不同边界条件和不同孔裂 隙形态下的运移特征提供基础。当前针对沿平行于压力 梯度方向的不同条数裂隙的拟一维数值模拟揭示了各物 理场之间的复杂耦合关系。数值计算结果表明,在入口 压力和浓度一定的情况下,随着裂隙数量的增加,煤层 气出口速度、浓度以及通量降低,这就表明沿压力梯度 方向的单一主裂隙要比平行分散多裂隙更有利于煤层气 的运移。关于更复杂的裂隙分布以及更接近实际工况的 边界条件可以在此基础上借助 COMSOL 软件模拟实现, 文中所述方法亦可推广到真实的二维和三维模型中。

参考文献

- [1] 谢和平,周宏伟,薛东杰,等. 我国煤与瓦斯共采:理论、 技术与工程[J]. 煤炭学报,2014,39(8): 1391-1397.
- [2] 冯增朝,赵阳升,文再明.煤岩体孔隙裂隙双重介质逾 渗机理研究[J]. 岩石力学与工程学报,2005,24 (2): 236-240.
- [3] 赵阳升. 多孔介质多场耦合作用及其工程响应[M]. 北京:科学出版社, 2010.
- [4] 杨天鸿,徐涛,刘建新,等.应力—损伤—渗流耦合模型 及在深部煤层瓦斯卸压实践中的应用[J]. 岩石力学 与工程学报, 2005, 24 (16);2900-2905.
- [5] 尹光志,鲜学福,王登科,等.含瓦斯煤岩固气耦合失 稳理论与实验研究[M].北京:科学出版社,2011.
- [6] Zhou Hongwei, Liu Jinfeng, Xue Dongjie, et al. Numerical simulation of gas flow process in mininginduced crack network. International Journal of Mining Science and Technology, 2012, 22(6): 793-799.
- [7] 祐文彬.流固耦合下煤层气吸附及渗流规律的数值模 拟研究.中国矿业大学(北京), 2015.

致谢

本文研究工作得到了"中央高校基本科研业 务费专项资金(2009QM03)"资助,也非常感谢 COMSOL公司在数值模拟中给予的支持与帮助。