

Diffusion-limited cluster growth during nucleation

Y. H. Lau¹, R. Hariharaputran¹, D. T. Wu¹ 1. Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore

Introduction:

- Nucleation is the formation of clusters of a stable phase from a metastable phase.
- Nucleation modeling requires cluster growth rates vs size.
- Exact rates are unavailable when
 - growth is limited by rate of molecule diffusion to clusters in non-polymorphic transformations and
 - molecule density on cluster surfaces is raised by Gibbs-2.

Comparison with capillarity-free solution for $\dot{R}(R)$:

- Solution overestimates growth rate by underestimating actual c_R .
- Estimate may be improved by using different solution for each R, such that equilibrium density in solution for one R equals capillarity-corrected c_R

Figure 1. Radial diffusion-limited growth [1].

Computational Methods:

1. Change to a moving $\hat{r} = r - R$ reference frame.

at that R.

Figure 5. Improve estimate by joining solutions for different c_{eq} at corresponding R.

- Improved estimate still exceeds true rate because each solution assumes constant C_R .
- Relative estimates deviation Of asymptotically appears linear in $c_{\infty}-c_R$

- 2. Shift and rescale density fix boundary field to densities.
- 3. Non-dimensionalize.
- 4. Restrict to 2D.
- 5. Sweep the over parameters $\frac{c_{eq}}{c_{eq}}, \frac{c_{\infty}}{c_{\infty}} \in [0,1).$ C_{stable} C_{stable} **Results for** $\dot{R}(R)$:

 Growth rate approaches solution for $c_R = c_{eq}$ w/o capillarity correction [2] (dashed lines below) as growing

RkTc_{stable}

 Table 1. Scaling parameters

Figure 6. Relative deviation from capillarity-free solution (dashed) and improved estimate (solid).

Conclusions:

- We computed 2D diffusion-limited growth rates that are affected by capillarity.
- Estimate constructed from solutions for different equilibrium densities is a

interface becomes planar ($R \rightarrow \infty$).

decent approximation for large clusters.

- Growth rate can be incorporated into nucleation model to better capture diffusion and capillarity effects. **References**:
- Ghez, R., Diffusion Phenomena, 60-74, (2001)
- Zener, C., Theory of Growth of Spherical Precipitates from 2. Solid Solution, JAP, 20, 950-953, (1949)

Excerpt from the Proceedings of the 2017 COMSOL Conference in Singapore