
PROBLEM: The implicit assumption that the reference 
potentials 𝜙𝑖

∗ are the same for all ionic species 
(“bottomless bulk”) leads to unrealistic results when the 
number of source charges is no longer small compared to 
the number of ionic charges (i.e. high applied potentials, 
low solution volumes, and/or low ion concentrations).

COMPUTATIONAL METHODS: To avoid this problem, we 
use the accurate charge density for a binary, symmetric 
electrolyte

𝜌 𝑧 =  𝑖 𝜈𝑖𝑒0𝑛
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which can be rewritten as

𝜌 𝑧 = 𝑛∗𝜈𝑒0𝑑
𝑒−𝑢 𝑧
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where                       𝑍± =  0
𝑑
𝑒∓𝑢 𝑧 𝑑𝑧.

These last two equations were used in the Electrostatics 
module (es) and solved in COMSOL Multiphysics®.

Figure 2. Bottom electrode. 
Uncoated area: glass; thickness of 
metal coating (Au/Pd): 5 nm.

Figure 3. Model geometry (2D axisym.) 
and electrostatic potential in 10-4 M 
electrolyte at 20 ℃ (bottom electrode: 
0.2 V; top: 0 V). Charge density on glass 
surface: 5000 𝑒0/μm
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INTRODUCTION: Electric double layers (EDLs) play a 
crucial role in many biophysical processes involving 
charged molecules (e.g. proteins, DNA), but are often a 
limiting factor in technological applications where charged 
conductors are brought in contact with electrolyte 
solutions. They form when charges in the conductor’s 
surface layer (source charges) attract oppositely charged 
ionic species, which, in turn, modifies the electrostatic 
field generated by the source charges alone.

CONCLUSIONS: In many cases of interest, such as in 
microfluidic device applications, the approximation of a 
“bottomless bulk” solution is not justified, and the 
classical GC equations fail to adequately describe the EDL. 
In these cases, finite GC theory must be employed using 
numerical simulations.
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Figure 4 (above). Penetration of 
the electrostatic field into the 
solution with increasing applied 
potential.

Figure 1. Simple EDL models. 
The Helmholtz model (left) 
assumes a compact layer of 
tightly bound counterions, 
while the Gouy-Chapman 
model (right) predicts a 
diffuse layer of counterions 
in solution.
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POISSON-BOLTZMANN (PB) THEORY: Assuming a Boltzmann 
distribution, the particle density for ionic species i at distance 
z from a planar electrode at potential 𝜙0 is 

𝑛𝑖 𝑧 = 𝑛𝑖
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𝜈𝑖𝑒0 𝜙 𝑧 −𝜙𝑖
∗

𝑘𝑇
,

where        𝜙𝑖
∗ = −

𝑘𝑇

𝜈𝑖𝑒0
ln

1

𝑑
 0
𝑑
exp −

𝜈𝑖𝑒0𝜙 𝑧

𝑘𝑇
𝑑𝑧 .

GOUY-CHAPMAN (GC) THEORY:
• binary, symmetric electrolyte: 𝜈⊕ = −𝜈⊖ = 𝜈

𝑛⊕
∗ = 𝑛⊖

∗ = 𝑛∗

• 𝑛𝑖 𝑧 = 𝑛𝑖
∗ at same z for all ionic species (“bulk”)

⟹ 𝜙𝑖
∗ = 𝜙𝑗

∗ = ⋯ = 𝜙∗, usually set to 0.

Inserting the charge density

𝜌 𝑧 =  𝑖 𝜈𝑖𝑒0𝑛
∗exp −

𝜈𝑖𝑒0 𝜙 𝑧 −𝜙∗

𝑘𝑇

into Poisson’s equation ∇2𝜙 =  −𝜌 𝜖 leads to GC equation:
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Analytical solution:
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𝑛𝑖
∗ bulk (average) ion density

𝜈𝑖 ion valency

𝑒0 elementary charge

𝜙 𝑧 electrostatic potential at distance z
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𝑘 Boltzmann constant

𝑇 absolute temperate

𝑑 thickness of solution layer

𝑢 normalized potential 𝑢 𝑧 ≡
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𝜅 reciprocal Debye length 𝜅 =  2𝑛∗𝜈2𝑒0
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Figure 5 (right). Ion concentration  
profiles at different applied 

potentials.
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