
INTRODUCTION: Resistive Random-Access Memory (RRAM) is a
promising nano-scale memory device which operates via bipolar resistive
switching between the insulating (OFF) and conducting (ON) states. The
switching is due to formation or destruction of a conducting filament in
its insulator layer, yet the underlying physics remains poorly understood.
Thus, based on our thermodynamic description [1], we built a numerical
RRAM model in COMSOL Multiphysics® which is manipulated with
MATLAB® to simulate RRAM device operation and its I-V characteristics.

COMPUTATIONAL METHODS: A Program is devised in MATLAB®
consisting of control, modules, and switching conditions that mimic
switching operation in a COMSOL® modeled RRAM device.

RESULTS: The Program closely reproduces the observed [2] RRAM
current-voltage (I-V) characteristics. As a unique feature, our
numerical model incorporates the configurational disorder present in
non-crystalline materials (HfO2-x in our case) simulating the observed
voltage ramp-rate dependency and cycle-to-cycle variation.

CONCLUSIONS: (1) We have developed a numerical model of RRAM
device in COSMOL® based on the thermodynamic description as a
significant simplification to the kinetic treatment. (2) Our approach
will aid the industry in technological advancement. (3) The non-trivial
feature of our modeling lie in the overlap of (a) the device smallness
and (b) its disordered structure accounted for through the random
double well atomic potential characteristic of amorphous materials.
(4) Future work includes tuning the Program for particular systems
and conditions.
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Table 1: Utilized COMSOL Modules and 
Differential Equations 
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Figure 1. Resistive switching in a generic metal-insulator-metal multilayered RRAM device.
i. Narrow filament forms and shunts RRAM (SET), ii. filament charges and polarizes its surrounding

(blue arrows), iii. reversing source polarity, oppositely charges filament which is energetically
unfavorable w.r.t surrounding polarization (red arrow) iv. dissolution of filament (RESET).
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Figure 2. Flowchart of the program that simulates RRAM 
switching operation
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Figure 3. Schematic of the modeled RRAM device.[2] Left: ON and SET, Right: OFF and RESET. Note: the 
filament and gap in SET and RESET process grows with voltage ramping as dictated by thermodynamics.[3]

Table 2: Utilized material parameters; additional parameters are presented in the paper.
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Material 𝜎𝑐[S/m] 𝜅[W/K.m] 𝐶𝑃[J/kg.K] 𝜖𝑟 𝜌[kg/m3]

SiO2 10-9 1.38 703 3.9 2.2103

TiN Exp. 𝜎𝑐(𝑇)
a 𝜎𝑐(𝑇)𝑇𝐿 545.33 -∞ 5.22103

Hf Exp. 𝜎𝑐(𝑇)
b 𝜎𝑐(𝑇)𝑇𝐿 144 -∞ 13.3103

HfO2 10 0.5 120 25 10103

HFO2-x 𝜎0𝑓𝑒𝑥𝑝 −𝛼𝑓 𝑙𝑛 𝜏/𝜏0 𝑒𝑥𝑝 𝑒𝑉/𝑘𝑇 𝜎𝑐(𝑇)𝑇𝐿 140 -∞ 12103

Gap 𝜎0𝑔𝑒𝑥𝑝 −𝛼𝑔 𝑙𝑛 𝜏/𝜏0 𝑒𝑥𝑝 𝑒𝑉/𝑘𝑇 𝜅𝑒𝑓𝑓𝜎𝑐(𝑇)𝑇𝐿 120 25 10103

Figure 5. Simulated current-voltage characteristics of RRAM device 
for three source voltage ramp-rate depicting ramp-rate dependence.

Figure 6. Simulated current-voltage characteristics of RRAM device 
for 10 switching cycle depicting cycle-to-cycle variation.

Figure 4. Simulated Current-Voltage characteristics of RRAM device 
for 100V/s source voltage ramp-rate 
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a E. Langereis et al., J. Appl. Phys. 100, 023534 (2006). 
b P. D. Desal, et al., J. Phys. Chem. Ref. Data. 3, 1069 (1984). 
a, b the experimental data points were inserted in COMSOL via interpolation function
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