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Abstract:   
 

With the current trend towards always more 
complexity associated to more functionalities in 
biotechnological systems, it is required to know 
with accuracy the pressure drop in the circuitry of 
microfluidic systems. In general, a full three-
dimensional calculation is not tractable due to the 
limited capacity of the computers. However, 
computational models can help to produce 
pressure drop correlations. In this work, we use 
COMSOL to contribute to the determination of 
pressure drops in different types of geometry, 
typical of biochips, like rectangular and pillared 
channels, and for different liquids, including non-
Newtonian biologic liquids. We show that the 
numerical results agree with the theoretical 
results—when they exist—and investigate the 
potentialities and limits of the 2D-Helle-Shaw 
formulation. 
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1. Introduction 
 

In this work, the laminar pressure drops in 
microchannels have been investigated for three 
cases: first, in rectangular channels for which 
analytical approximate solutions exist [1,2,3]. It is 
shown here that the 3D-COMSOL numerical 
results reproduce quite well the pressure drop 
obtained by analytical models. On the other hand, 
the 2D-Helle-Shaw (noted 2D-HS) formulation is 
accurate under the condition that the channel 
depth d is small compared to its width w [2,3]. 
Indeed, the 2D-HS formulation 
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212. µµρ −∆+−∇=∇ ,       (1)  

 
where ρ and µ are respectively the density and 
visocity of the fluid, supposes a vertical parabolic 
profile, which is exact for an aspect ratio smaller 
than 1/3. In (1), P is the pressure, U the velocity, ρ 
the liquid density and µ the liquid viscosity. 

Second, we investigate the pressure drop in 
pillared channels. We indicate the domain where 
the 2D-HS is accurate and derive a scaling law in 
this domain. Finally, we investigate the case of 
non-Newtonian liquids flowing in cylindrical and 
rectangular channels. The COMSOL results agree 
with the Rabinowitsch-Mooney model for a 
cylindrical duct and with Kozicki and Muzyckha 
models for rectangular channels [4,5]. A 
simplified expression is deduced from the 
COMSOL approach for square channels.. 
 
2. Pressure drop in rectangular channels 
 

Flow channels in microsystems are usually 
rectangular. This is due to the microfabrication 
process. Pressure drops in such channels have 
been largely documented [1,2,3]. The most used 
formula to calculate the laminar pressure drop in a 
rectangular microchannel of aspect 
ratio ( )wddw ,min=ε —where d and w are the 

two dimensions of the cross section—is the 
expression [2,3] 
 

QRP =∆  ,             (2) 
 

with 
 

( ))(),min(4 22 εµ qdwdwLR =  , 
 
where the function q is the form factor given by 
 

( ) ( )επεπε 2tanh6431)( 5−=q .  

 
A good agreement with the theoretical formula is 
obtained by a 3D calculation with COMSOL. A 
good agreement is also obtained by using a 2D 
Helle-Shaw calculation when the aspect ratio is 
less than 1/3 [1,2]. For larger aspect ratios (1/3 to 
1) the agreement is a little less satisfactory, but 
this method still yields an approximation of the 
pressure drop (fig.1). In a typical case of a channel 
of width w=100 µm, length L=400 µm and flow 
rate Q=1 µl/mn, the analytical and 3D-COMSOL 
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pressure profiles are nearly indiscernible for any 
aspect ratio, whereas the 2D-HS model is adequate 
for aspect ratios less than 1/3 approximately: 
relative errors of 2°/oo, 3% and 5% are 
respectively found for aspect ratios of 2/5, ½ and 
1. Note that the pressure drop is much larger for a 
small aspect ratio channel under the same flow 
rate conditions. 
 

 
Figure 1. Comparison of the pressure profile in a 
rectangular channel between analytical expression 
(red squares), 3D-COMSOL (continuous blue line with 
diamonds) and 2D-HS-COMSOL (continuous green 
line with circles) formulations, for three different aspect 
ratios:  
 
 
3. Pressure drop in pillared channel 
 

Pillared channels are commonly used in 
microfluidic systems. Pillars have two main 
functions: first, they can be used as additional 
active surface for performing heterogeneous wall 
biochemical reactions [6]; they provide a large 
surface over volume ratio that promotes the 
contact or capture of targets on the functionalized 
pillars. The second use of pillars (or posts) is 
mechanical: micropillars (even nano-pillars) are 
used to facilitate the direct bonding process of the 
cover plate that seals the microsystem; this is 
especially the case of extremely small channels, at 
the limit of the nanoscales. In such a case, micro-
pillar tops bring additional contact for the cover 
plate and limit the “free” suspended area [7,8] 
(fig.2).  

 

 
Fig.2. SEM image of the cross- section of a pillared 
microchannel, showing the thin cover plate sealing the 
microsystem [7] (photo courtesy V. Agache).           
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Fig.3. Model for the flow calculation in a slice of 
pillared channel. 

 
Many parameters are associated with a pillared 
geometry: pillar height (h), gaps (g along the flow 
direction and w perpendicular to it), the pillar 
diameter φ, the length L and width W of the outer 
boundaries (fig.3). Let us assume that the global 
scales W and L are much larger than the local 
scales w and g. In a recent publication, Srivastava 
et al. have numerically investigated with 
COMSOL the case where the spacing is 
homogeneous—i.e. w=g and the aspect ratio h/w 
larger than 1 [9]. In this work we focus on smaller 
aspect ratios [ ]1,1.0∈wh , and we take into 

account non homogeneous spacing, i.e. w ≠ g. 
 
The numerical approach is straightforward: the 
Navier-Stokes equation is used with the standard 
boundary conditions (specified inlet velocities and 
zero pressure at the outlet). The mesh number is 
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the largest possible taken into account the 
computer memory, and the convergence of the 
solution with the mesh size has been checked.  
 
First, it is numerically observed that, in the 
parametric domain defined by 
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and shown in figure 4, the 2D-HS model 
developed for rectangular cross section is valid. It 
implicitly means that the vertical velocity profile 
is approximately quadratic, even when the axial 
flow is modified by the presence of pillars.  
Besides, in the domain Ω, the COMSOL approach 
leads to the relation 
 

 
1.022

1.0130

gwh

Q

x

P φµ≈
∂
∂

                (3) 

 
Figures 5, 6 and 7 show the variation of 

xP ∂∂ respectively with 1/h2, 1/w2 and 1/g0.1. 
Note that W and L do not appear in (3) because 
they are assumed to be much larger than w and g. 
Note also that it is not needed to investigate the 
variation of xP ∂∂ with φ—which would be very 

lengthy—because the exponent of φ is directly 
obtained by a dimensional analysis of (3).   
 

h/w

w/φ

Ref [9]

1 100.1

1

2

10

Helle-Shaw 2D formulation

This study

Fig.4. Domain of validity of the present work and [9]. 

h = 10, 20 µm
g = 5, 10 µm

 
Fig.5. Pressure gradient as a function of the height of 
the channel h: the dots correspond to COMSOL (3D and 
HS) calculations and the continuous line to the power 
law 1/h2. Note that the HS formulation is very close to 
the full 3D model. 
 

h = 10 µm
g =10 µm
φ =10 µm

 
Fig.6. Pressure gradient as a function of the axial 
spacing w: the dots correspond to COMSOL (3D and 
HS) calculations and the continuous line to the power 
law 1/w2.  
 
 
In conclusion, for aspect ratios smaller than 1, the 
Helle-Shaw model (1) correctly predicts the 
pressure drop in the domain Ω.  Moreover, 
relation (3) is fast and convenient for the 
prediction of the pressure drop in Ω.  
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w = 10 µm
h = 10 µm
φ = 10 µm

Fig.7. Pressure gradient as a function of the gap: dots 
correspond to COMSOL (3D and HS) calculations and 
the continuous line to the power law 1/g0.1.  
 
 
4. Pressure drop of non-Newtonian liquids 
in microchannels  
 
In modern biotechnology, viscoelastic fluids like 
whole blood or alginates, xanthan, etc. are 
increasingly used. This is for example the case of 
cell encapsulation in alginates (Fig.8). However, 
pressure drop determination of non-Newtonian 
fluid flows remains a challenge. Indeed, for a 
Newtonian fluid, the force balance on a control 
volume of a rectangular channel of width w, depth 
d and wall surface S, can be expressed as  
 

 ∫=∆
S

w ds
dw

P τ1
            (4) 

 
where wτ is  the wall friction. For a 2D case, and a 

Poiseuille flow, the wall friction is simply given 
by  
 

d

U
w

µτ 6=              (5) 

 
where µ is the viscosity and U  the average 
velocity. Substitution of (5) in (4) yields 
 

2

12

d

UL
P

µ=∆                (6) 

 
where L is the length of the control volume. 

 

Fig.8. Encapsulation of cells in visco-elastic alginates 
(photo courtesy P. Dalle). 
 
 
However, in the case of a non-Newtonian fluid, 
equation (4) becomes a complicated integral  
 

( )∫=∆
S

ww dzdydx
dw

P γγη &&
1               (7) 

 
where wγ& is the wall shear rate. The only case for 

which a closed form formulation exists is that of a 
cylindrical duct in which a ‘power law’ fluid 
(Ostwald fluid) circulates. It is recalled that the 
viscosity of a ‘power law’ fluid has the form 
 

1−= nK γη &              (8) 

 
where K and n are constants, and the friction is 
expressed by 
 

nK γγητ && ==             (9) 

 
Note that, even if the fluid is not exactly an 
Ostwald fluid, its viscosity can often be 
approximated by a power law. For example, in the 
case of alginates—widely used in biotechnology 
and biology—it has been shown that they obey a 
Carreau-Yasuda relation [10]. A power law 
approximation can be found by setting K=0.5 and 
n=0.8 (Fig.9). 
 
In such a case, the solution has been formally 
given by Rabinowitsch and Mooney [4] 
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where K and n are the constant of the ‘power law’ 
fluid. Hence, the hydraulic resistance is  
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Ostwald relation

Carreau-Yasuda relation

Fig.9. Comparison between the nearly exact Carreau-
Yasuda relation for the viscosity and a simple power 
law (Ostawald relation). 
 
 
Relation (11) shows that the hydraulic resistance 
is not a geometrical constant, and depends on the 
flow velocity. This is a drastic difference between 
Newtonian and non-Newtonian fluids that has 
important consequences on microfluidic networks 
[11]. Inspired by the cylindrical approach, 
approximated relations have been found for 
rectangular channels [5,12-14], leading to the 
expression 
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where the geometric coefficient c1 and c2 are given 
in appendix 1. The hydraulic resistance of a 
rectangular channel is then 
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Again, it is observed that the hydraulic resistance 
depends on the flow conditions.  
 
We have numerically investigated the case of a 
square channel using different power law—
varying K and n in (8)—and different flow rates 
with the COMSOL numerical software. It appears 
that the wall friction collapses in all the considered 
cases on the same quadratic law, even if the 
velocity profile is not quadratic in the central part 
of the channel (Fig.10). The wall shear rate is 
given by the relation 
 

Fig.10. Reduced wall shear rates obtained using 
COMSOL and second order polynomial fit. 
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where k =2. Hence, the pressure drop is then given 
by the relation 
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The advantage of this latter formulation over (12) 
is that no geometrical coefficient is needed. The 
hydraulic resistance can be cast under the form 
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Figure 11 shows a comparison between the 
literature results (Kozicki et al. Muzychka et al. 
and Miller), correlation (14) deduced from 
COMSOL calculations and COMSOL 3D 
calculation for a 100 µm channel. 
 
 
5. Conclusion  

 
If the aspect ratio of a rectangular micro-channel 
is small enough, the 2D-Helle-Shaw approach is 
valid. It is less accurate for aspect ratios slightly 
above 1.  
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Fig.10. Non-Newtonian pressure profiles in a 100 µm x 
100 µm square channel of length L= 500 µm. 
 
 
It is also valid for pillared channels of relatively 
small aspect ratios. Using a similar numerical 
approach as that of [9], a scaling law for the 
pressure drop has been derived. This scaling law, 
valid for small aspect ratios, differs considerably 
from that of [9], valid for high aspect ratios. A 
universal law is still to be found. 
 
Non-Newtonian flows are complex and only the 
case of Ostwald fluids in cylindrical or rectangular 
channels has been investigated in the literature. 
The COMSOL numerical approach agrees with 
the published results, and has been used to derive 
a pressure drop correlation for a square channel, 
requiring no geometrical coefficients. 
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Appendix 1: Kozicki expression for the 
pressure drop. 
 
First, a non-dimensional friction is defined by 
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where ε = min(w/d,d/w) is the aspect ratio. It is 
recalled that for square channels ε=1. The 
geometrical constant c1 and c2 are then 
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Then, the dimensional friction is 
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Finally the pressure drop is 
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