

Thermo-Acoustic Simulation of a Piezoelectric Transducer for Interstitial Thermal Ablation with MRTI Based Validation

K. Y. Gandomi, P. A. W. G Carvalho, Z. Zhao, C. J. Nycz, E.C. Burdette and G. S. Fischer

Automation and Interventional Medicine Lab

Worcester Polytechnic Institute, Robotics Engineering Department

In collaboration with:

GE Global Research

Interventions in Brain Cancer

- Primary Objective of Cancer Treatment
 - Remove all malignant cells while conserving healthy tissue
- Achieving appropriate margins is vital for reducing remission [1]
 - Tumor location, size, shape, and visibility can make this more difficult
- Deep Brain Malignancies
 - Unsuited for Conventional Surgical Intervention Require Other Treatment Options
 - Chemotherapy
 - Brachytherapy
 - Immunotherapy
 - Thermotherapy
 - Others

Conformal Ablation

• Needle Based Therapeutic Ultrasound (NBTU)

- Cylindrical Segmented Piezoelectric Transducer
 - Produces directed ultrasound
 - Localized heating caused by absorbed acoustic energy
- Rotating produced beam for Conformal Ablation
 - Thermal dosage can be monitored using MRTI

MRI Compatible Surgical Robots

- MRTI Compatible Robotics for NBTU [2]
 - Accurate Probe Placement
 - Precise Rotation Control of Acoustic Beam
- Towards Closed Loop Ablation Control
 - Robotic Path Planning
 - Model Based Thermal Propagation
 - MRTI Feedback
- COMSOL 5.3a Simulation of NBTU Probe
 - Two Dimensional Model of Static Probe
 - Experimental Validation

Operating Principles of Piezoelectric Transducers

• Inverse Piezoelectric Effect

 The capability of certain materials to strain when subject to an electric potential.

Cylindrical Transducers

 Rapid oscillating deformation under applied alternating field

Produces Acoustic Waves

 Transducers geometry and material determines ideal resonant frequency and wave properties such as beam shape, directionality, and intensity

Characterizing Thermal Propagation

- Absorption of Produced Acoustic Waves produces localized heating
- Key Properties of the Transducer and Medium determine the change in temperature by NBTU probe

Needle Based Therapeutic Ultrasound (NBTU) Probe

• NBTU Probe Acoustic MedSystems (AMS) Inc.

- Probe Specifications:
 - 1.55 mm OD x 10mm PZT-4 Transducer
 - Notched 90° Sectored Probe

Acoustic MedSystems TheraVision Integrated Interventional System

COMSOL 5.3a Simulation – Model Setup

2D COMSOL Component

- Built in Geometry Tools
- NBTU Transducer Design
 - Difference of two concentric circles
 - Four notches producing a 90 and 180 degree segments
 - Lead Zirconate Titanate (PZT-4)

Acoustic Medium

- 100mm x 100mm square
- Blank Material with Properties based on [5]
 - Heat Capacity at Constant Pressure: 3451 J/(Kg*K)
 - Thermal Conductivity: 0.53 W/(m*K)
 - Density: 1058 Kg/m^3
 - Speed of Sound in Medium: 1551 \$m/s

COMSOL 5.3a Simulation – Physics Interfaces

• Acoustic Piezoelectric Interaction – Frequency Domain Multiphysics

 Solid Mechanics Piezoelectric Material Fixed Constraint Probe Poling by applying a Cylindrical Base Coordinate System 	Electrostatics • Applied to NBTU Probe • 7.8V Applied to 90 degree segment • Inner circumference defined as ground
Physics II	nterfaces
 Pressure Acoustics Applied to Acoustic Medium Attenuation Coefficient of 31.96 Np/m Far-field and Cylindrical Radiation 	Bioheat • User Defined Heat Source • Q = acpr.Q_pw * step(t-t_probeOn) • Penne's Bioheat Transfer Equation

COMSOL 5.3a Simulation – Resonant Frequency

Frequency vs Probe Deformation

- Resonant Frequency, or Natural Frequency
 - Amplitude of probe deformation is at a relative maximum

COMSOL Boundary Probe

 Measuring total displacement of the probe on the outer circumference of the transducer

• Frequency Domain Study

- Sweep from 1MHZ to 10MHz at 0.1 kHz steps
- Solid Mechanics and Electrostatics Interfaces
- Qualitative analysis of peaks based on intensity and direction
- Resulting selected resonant mode was 5.237 MHz

COMSOL 5.3a Simulation – Acoustic Pressure Field

freq(1)=5.2373 MHz Surface: Total acoustic pressure field (Pa) mm ×10⁵ 50 40 30 3 20 2 10 1 0 0 -1 -10 -2 -20 -3 -30 -4 -40 -5 -50 -60 -40 -20 0 20 40 60 mm

Acoustic Pressure Field

Acoustic Pressure Field

- Used to derive Acoustic Intensity
- Used to Calculate Thermal Propagation

• Frequency Domain Study

- Study conducted at resonant mode
- Pressure Acoustics, solid mechanics, and electrostatics interfaces
- Results depict a focused 90 degree beam

COMSOL 5.3a Simulation – Thermal Propagation

Thermal Propagation (240 seconds of insonation)

• Time Domain Study

- Bioheat Transfer interface
- Previous study used as a dependent variable
- Study Conducted over 480 seconds
 - First 240 seconds the transducer was ON
 - Second 240 seconds the transducer was OFF

Experimental Setup

- Acoustic Phantom Based in [5]
- NBTU Probe and Phantom Placed in MRI
 - Achieva 3T (Philips, USA)
 - Two Flex Coils
 - FFE-EPI at 1.5mm cubed voxels
 - MRTI Data Collected
- 4 Minutes Ablation with 4 Minutes Cooling

MRTI Result Comparison

60s

MRTI Result Comparison

240s

- RMS Error: 0.53 °C
- Maximum Difference: 1.54 °C

Conclusion and Future Work

- Multiphysics simulation of an NBTU Probe
- Studies conducted to calculate thermal heating
- Experimental validation of thermal propagation under MRTI
- Future Work:
 - Explore 3D Modeling of Transducer
 - Develop Dynamic Models of Rotating Probe
 - Closed Loop Control with MRTI Feedback for Surgical Robot Systems
 - Non-static material properties and blood perfusion

Questions ?

• AIM Lab:

- aimlab.wpi.edu

• Emails:

- kygandomi@wpi.edu
- gfischer@wpi.edu
- cjnycz@wpi.edu
- clifb@acousticmed.com
- zzhao4@wpi.edu
- pacarvalho@wpi.edu

References

- [1] Lacroix, M. et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival.J.neurosurgery 95, 190–198 (2001).
- [2] Nycz, C. J. et al. Mechanical validation of an mri compatible stereotactic neurosurgery robot in preparation for pre-clinical trials. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),1677–1684 (IEEE, 2017).
- [3] https://www.elprocus.com/what-is-the-piezoelectric-effect-working-and-its-applications/
- [4] Xu, Jie, et al. "Analysis on coupled vibration of a radially polarized piezoelectric cylindrical transducer." Sensors 17.12 (2017): 2850.
- [5] Farrer, A. I. et al. Characterization and evaluation of tissue-mimicking gelatin phantoms for use with mrgfus.J. therapeutic ultrasound 3, 9 (2015).