

Innovation and Creativity

Analytical and Experimental Validation of Electromagnetic Simulations Using COMSOL®, re Inductance, Induction Heating and Magnetic Fields

Presented by M.W. Kennedy

Co-Authors: S. Akhtar, J.A. Bakken, R.E. Aune

Impact of work piece on magnetic field distribution and relative strength, 50 Hz

Infinite coil:

Short coil:

Coil with a work piece:

$$\left| \overrightarrow{B_{\infty}} \right| = \frac{\mu_o \mu_r N_c I_c}{l} \quad \left| \overrightarrow{B_o} \right| = k_N \left| \overrightarrow{B_{\infty}} \right|$$

$$\left| \overrightarrow{B_{\infty}} \right| = \frac{\mu_o \mu_r N_c I_c}{l_c} \qquad \left| \overrightarrow{B_o} \right| = k_N \left| \overrightarrow{B_{\infty}} \right| \qquad k_N^* = k_N \left(1 - \left(\frac{D_w - \delta_w}{D_c + \delta_c} \right)^2 \right) + \left(\frac{D_w - \delta_w}{D_c + \delta_c} \right)^2$$

Short coils have non-uniform fields both axially and radially. The field is strongly influenced by the work piece/coil geometry and the electromagnetic penetration depth in the work piece.

Modelling of magnetic fields and induction heating with COMSOL®

- Should the coil be voltage or current driven?
- How big does the magnetic domain need to be to simulate an infinite external volume? i.e. when is the coil flux density estimated with 100% accuracy for a given applied magneto-motive force (NI)?

Modelling of magnetic fields and induction heating with COMSOL®

- Which domain, "single-turn" or "multi-turn" can be used and under what circumstances?
- What mesh is required to obtain accurate results at different frequencies? How do we relate this to the physics?
- How accurately can a 2D axial symmetric model estimate magnetic fields and heating rates for cylindrical work pieces in experimental helical coils?

Innovation and Creativity

$$L_o{=} \ \ \frac{8\mu_0N^2r^3}{3\ell^2} \left[\frac{2k^2-1}{k^3}E(k) + \frac{1-k^2}{k^3}K(k) - 1 \right] \ \ k = \sqrt{\frac{4r^2}{4r^2+\ell^2}}$$

$$L_{o} = \frac{k_{N} A_{c} N_{c} \left| \overrightarrow{B_{\infty}} \right|}{I_{c}}$$

 k_N = Nagaoka short coil correction factor. Can be solved to double precision accuracy.

Air gap flux density² determines the heating rate!

Comparison of COMSOL® and analytical inductance of a current sheet

	COMSOI		
	COMSOL	Analytical	
Ratio of Magnetic	Calculated	Solution	
Domain Dimensions	Inductance	Difference	
to Coil Dimensions	(µH)	(%)	
2.00	22.7563	-13.82	
4.00	25.9502	-1.72	
6.00	26.2783	-0.48	
10.00	26.3870	-0.07	
14.00	26.4057	0.00	
20.00	26.4129	0.03	

Error in inductance is the same as for the flux density and is then squared when calculating heating rate!

Theoretical answer = $26.4051 \mu H$. Ratio of 14 gives ideal results.

Induction heating instrumentation

Electrical conductivity accuracy of +/- 0.5%

Standards +/- 0.01% IACS

Magnetic field measurements
Axial/Transverse
From 0.1µT-30T
+/- 1.0% AC
Standards from
500-2000 Gauss

Electrical analysis:

- I. V, I, P (+/-100 W), p.f.
- 2. Inductance
- 3. Harmonics
- 4. Current +/- 1% (usable up to 100 kHz)

Coil and work piece

6 mm by 1 mm wall, DHP copper 80% IACS electrical conductivity Insulated with glass fibre sleeves

A356 aluminium alloy 48% IACS conductivity

Mesh 1

Induction heating using mesh 1

				Mesh 1-	
	Experimental	Analytical		Analytical	
Frequency	Power	Power	Mesh 1	Difference	δ
(Hz)	(W)	(W)	Power (W)	(%)	(mm)
50	696	691	650	-6.0	14.50
500	N/A	2768	2604	-5.9	4.59
5000	N/A	9549	10280	7.7	1.45
50000	N/A	29697	24211	-18.5	0.46
500000	N/A	94123	25728	-72.7	0.14
	Mesh 1spacing at work piece interface =				

At "High Frequency"the power induced should change by \sqrt{f} . Also the first electromagnetic penetration depth will contain 63% of the total current and 86% of the power, with an **exponential gradient squared**.

Variation of heating rate with frequency^{0.5} ¹¹

Induction heating using boundary meshes

				Mesh 2-	
	Experimental	Analytical	Mesh 2	Analytical	
Frequency	Power	Power	Power	Difference	δ
(Hz)	(W)	(W)	(W)	(%)	(mm)
50	696	691	650	-6.0	14.5
500	N/A	2768	2597	-6.2	4.59
5000	N/A	9549	8834	-7.5	1.45
50000	N/A	29697	28305	-4.7	0.46
500000	N/A	94123	90029	-4.3	0.14
	Mesh 2 spacing at work piece interface =				

Boundary meshes allow accurate calculation to extremely high frequency. Mesh spacing should be $< \delta$.

"Single-turn" vs. "Multi-turn" domain

If δ < tubing diameter, must use "Single-turn" domain and ideally a current driven coil, voltage driven "Multi-turn" results will be wrong.

Dimensionless flux density vs. position

Transverse probe magnetic field measurements 2 mm over top of short coil

Transverse probe magnetic field measurements from side of short coil

• Experimental -5mm — COMSOL-5mm A Experimental -10mm — COMSOL-10mm

Conclusions

- Current driven coils are recommended, they give the correct magneto-motive-force (NI).
- 14 times the coil size is sufficient to simulate an infinite external volume, for 2D axial symmetric models.
- "Single-turn" domain is recommended, it gives correct results at all frequencies.

Conclusions

- "Multi-turn" domain can be used if the electromagnetic penetration depth is greater than the coil tubing diameter.
- Due to the extremely steep current gradients at the surface of the work piece at high frequencies (small δ), boundary meshes should be used to give a mesh spacing $< \delta$.
- Magnetic field estimates with error < 1-2% and heating estimates with errors < 6% can be obtained. (Note: New calorific measurements have verified errors to be < 2%!)

Acknowledgement

Funding from the Norwegian Research Council (NRC) for the RIRA (Remelting and Inclusion Refining of Aluminium).

The Project partners include: Hydro Aluminium, SAPA Heat Transfer, Alcoa Norway, NTNU and Sintef Materials and Chemistry.

Special thanks to: Egil Torsetnes and Kurt Sandaunet for experimental support.

Thank you for your attention!

Mark William Kennedy

Department of Materials Science and Engineering

Phone: +47 73595164

Mobile: +47 92219891

E-mail: mark.kennedy@material.ntnu.no

Variation of magnetic penetration depth with frequency

Centreline magnetic fields of short coils

Equations for 1D analytical and 2D axial symmetric model

$$P_{w} = k_{N}^{*2} \sqrt{2}\pi (I_{c}N_{c})^{2} \rho_{w} \xi_{w} \varphi(\xi_{w}) / l_{c}$$

$$k_N^* = k_N \left(1 - \left(\frac{D_w - \delta_w}{D_c + \delta_c} \right)^2 \right) + \left(\frac{D_w - \delta_w}{D_c + \delta_c} \right)^2$$

$$\varphi(\xi_{w}) = \frac{\sqrt{2}(ber\xi_{w}ber''\xi_{w} + bei\xi_{w}bei''\xi_{w})}{ber^{2}(\xi_{w}) + bei^{2}(\xi_{w})}$$

$$\xi_{w} = \frac{D_{w}}{\delta_{w}\sqrt{2}} \qquad \delta_{w} = \left(\frac{\rho_{w}}{\pi\mu_{r}\mu_{o}f}\right)^{0.5}$$

$$\overrightarrow{B} = \nabla \times \overrightarrow{A}$$

$$\overrightarrow{B} = \mu_o \mu_r \overrightarrow{H}$$

$$\nabla \times \overrightarrow{H} = \overrightarrow{J}$$

$$\overrightarrow{J} = \sigma \overrightarrow{E} + \overrightarrow{J}^e$$

$$\overrightarrow{E} = \nabla V - \frac{\partial \overrightarrow{A}}{\partial t}$$

$$j\omega \sigma \overrightarrow{A}_{\phi} + \nabla \times \overrightarrow{H} = \overrightarrow{J}^e$$

Factors for analytical solutions

