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Introduction Safety fuses

Background information about safety fuses

Permanent rise of the amount of electrical systems in today’s
automobiles and in parallel, lack of available space

High temperatures in cables, connecting structures and other
electrical car elements

→ Danger of overheating and irreparable damages

⇒ Function of safety fuses:
Protection of the assemblies by interrupting the electric circuit
(galvanic isolation)
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Introduction Safety fuses

Different types of safety fuses
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Experimental setup

Experimental setup
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Experimental setup

Determination of triggering curve

Determination of triggering times with 120 % of nominal
current up to 300 % in several steps

Repetition of the measurement for each current three times
and fitting of the average values

Triggering curve of a fuse type:
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Numerical model

Numerical model

Heat in fuse generated by electrical current:
Joule heating problem

Given current I [A] determines an electric potential U0 [V ]
whose magnitude depends on the material’s characteristics,
especially the resistance R [Ω]

Passage of electrical current through conductor releases heat
due to resistive losses in material
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Numerical model Governing equations

Governing equations

Heat equation

ρCp
∂T

∂t
= k∆T + Q in Ωsol

where

Ωsol Domain of solid material, Ωsol ∈ R3

T Temperature [K]
t Time [s]

ρ Density [ kg
m3 ]

Cp Specific heat capacity [ J
kg·K ]

k Heat conductivity [ W
m·K ]

Q Total power density [ W
m3 ]
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Numerical model Governing equations

Calculation of the total power density Q

Resistance loss U0 in fuse element consisting of Cu and Sn

U0 = I · R = I · `
A
· ρR = I · ` · ρCu ρSn

ACuρSn + ASnρCu

Electrical power P generated in fuse element

P = U0 · I = I 2 · ` · ρCu ρSn
ACuρSn + ASnρCu

Total power density Q in fuse element

Q =
P

V
=

I 2

ACu + ASn
· ρCu ρSn
ACuρSn + ASnρCu
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Numerical model Boundary conditions

Boundary conditions

Boundary condition solid material - air

k
∂T

∂n
= α(T )(Tenv − T ) on Γex

where

Γex Exterior boundary
∂T
∂n Normal derivative of T , [Km ]
Tenv Ambient temperature [K]

α(T ) Heat transfer coefficient [ W
m2·K ]

Transient Analysis of the Triggering Behaviour of Safety Fuses 11 von 21



Numerical model Boundary conditions

Boundary conditions

Boundary condition solid material - air

k
∂T

∂n
= α(T )(Tenv − T ) on Γex

where

Γex Exterior boundary
∂T
∂n Normal derivative of T , [Km ]
Tenv Ambient temperature [K]

α(T ) Heat transfer coefficient [ W
m2·K ]

Transient Analysis of the Triggering Behaviour of Safety Fuses 12 von 21



Numerical model Boundary conditions

Heat transfer coefficient α

High temperature-dependency and important influence to
simulation results

α consists of two parts: convection and radiation

α = αconv + αrad

αconv :

→ Calculation via formulas obtained by fitting of empirical data
→ Dependency on a multitude of physical variables

(i.e. Prandtl-Number, thermal extension coefficient of air,...)

αrad :

→ Calculation according to Stefan-Boltzmann law with absolute
temperatures T1K and T2K :

αrad = εσ(T 2
1K + T 2

2K )(T1K + T2K )
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Numerical model Initial conditions

Initial conditions

Temperature at beginning t = 0

T (x , 0) = Tenv in Ωsol
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Numerical model Initial conditions

Results of the simulation
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Comparison of measurements and simulation results

Comparison of measurements and simulation results

Accordance of measurement results and simulations as main
objective of our investigations

Problem 1:
Is the heating of the fuse element until the melting point a
unique indicator for the triggering of the fuse?

Problem 2:
What is the exact melting point of a fuse element consisting
of 60 % of copper (melting point 1083 ◦C) and 40 % of tin
(melting point 231 ◦C)?

⇒ Comparison of simulation curves for different maximal
temperatures in the fuse element with measurement results
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Comparison of measurements and simulation results

Calculated and measured triggering curves
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Comparison of measurements and simulation results

→ Triggering times simulation ≤ triggering times measurements

→ Possible reasons for this tendency:
1 Exact melting temperature of fuse element unknown
2 Latent heat: further energy needed to melt material
3 Neglect of heat dissipating via attached cables

→ Good accordance of simulation and measurement for supposed
melting temperature of 730 ◦C (= melting temperature of
copper-tin-alloy)
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Further results

Further results

Application of COMSOL simulation to test external and design
influences regarding triggering behaviour:
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Conlcuding remarks and further work

Conlcuding remarks and further work

→ Experimental setup and numerical simulation for triggering
behaviour of safety fuses

→ Influence of different materials and plastic housing shown
exemplarily

→ Future work:

Measurements for the temperature of the fuse element and the
attached cables
Improve simulation by integrating the influence of attached
cables, chemical reactions taking place for lower loads over
longer periods and exact knowledge when electric circuit
interrupts
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Conlcuding remarks and further work Goodbye

Goodbye

Thank you for your attention!
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