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Introduction
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An Overview of EM Applications

Low Frequency Devices:

� Transformers

� Electric motors

� Power generators

� EM forming and welding

� EM interference/coupling

� Induction heating devices

High Frequency Devices:

� Antennas

� Waveguides and Resonant cavities

� Magnetic storage and imaging systems

� Optoelectronics and photonics

� Microwave circuits and devices

� Plasma devices

� EM principles form the core of electricity generation, transmission and 

distribution

� EM, and its computational version, are used to design, test and 

validate devices across a wide range of sizes – from the smallest 

micro-electro-mechanical (MEMS) devices to the very large 

transformers and generators
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Need for EM Field Computation

� Computation of magnetic fields is required in all low frequency 

and high frequency devices for:

� Evaluation and improvement of performance parameters at the 

design stage

� Reliability enhancement

� Investigative analysis

� Field computation provides a non-destructive technique for 

testing and evaluation

� In order to optimize material costs, in the present-day highly 

global market, an accurate understanding and analysis of the 

field distribution is necessary
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Low Frequency Devices: Performance Parameters

� Inductances and capacitances  

� Insulation design for high voltage applications

� Eddy currents 

� Forces in windings and current carrying bars

� Torques in rotating machines

� Mechanical stresses / deformations

� Temperature profiles and hot-spots

� Noise level 
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High Frequency Devices: Performance Parameters

� S parameters  

� Power flow/Poynting vector 

� Propagation constants

� Characteristic impedance

� Radiation patterns

� Modal field distributions
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Computational Methods

� Difference methods:

� Finite difference method (FDM)

� Finite-difference time-domain method  (FDTD)

� Variational / Weighted residual approach:

� Finite element method (FEM) 

� Integral methods:

� Method of moments (MoM)

� Boundary element method (BEM)

� Charge simulation method (CSM)
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Finite Element Method

� The method has emerged as the forerunner among all the 

numerical techniques

� Geometrical complexities can be handled in better ways 

using FEM

� Anisotropic, non-uniform and non-linear media can be 

incorporated 

� Availability of several commercial softwares makes the 

applicability to real-life problems easier

� Finite element method can also be used in solving problems 

involving coupling of electromagnetic fields with circuits 

and/or other physical fields
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Classification of Electromagnetic 

Field Problems
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Basic Governing Equations

� Maxwell’s equations: -
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Typical entities and problem types: Low frequency

Voltage fed

solid

Current fed 

conductors

Current fed 

conductors

air/oil/insulation

Laminated
Iron

stranded

massive

Eddy currents, non-magnetic region

Voltage fed

conductor

conductors
stranded

Eddy

Moving conductors

Neumann
boundary

boundary
Dirichlet

currents,
magnetic

region, 
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� Electrostatics: 

� Analysis of the electric field in capacitive or dielectric 

systems

� Computation of electric field, capacitance, electrostatic 

forces and torques, etc. 

13

ε ε ρ+ = −
2 2

2 2x y v

d V d V

dx dy

Classification of Electromagnetic Field Problems
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� Magnetostatics: 

� This analysis type is used to analyze 

magnetic field produced by direct electric 

current, permanent magnet or applied 

magnetic field  

� The static analysis is used to compute 

parameters such as magnetic flux, self and 

mutual inductances, forces, torques, etc. 

14
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� Time-harmonic: Diffusion Equation

� Harmonic analysis is used for sinusoidal excitations and 

linear materials 

� The analysis can be carried out for a single frequency or a 

range of frequencies to compute eddy currents, stray losses, 

skin effect and proximity effect

15

( )σ ω
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+ + = ∇ +
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Eddy currents in magnetic clamp plate Eddy currents in non-magnetic clamp plate
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� Time-harmonic: Wave Equation

16

� The wave equations for time harmonic electric and 

magnetic fields with angular frequency ω are:

ω µε

ω µε

∇ + =

∇ + =

2 2

2 2

0

0

E E

H H

∂ ∂ ∂
∇ ≡ + +

∂ ∂ ∂

2 2 2
2

2 2 2x y z

TE22

TE20 TM11

TM21

Rectangular Waveguides
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Eigenvalue FEM analysis of a plasmonic waveguide

� Photonic circuits of nanoscale dimensons: A potential research 

area

� These could form harmonizing links between nano-scaled 

electron devices and micro-scaled optical devices

� FEM analysis*: Metal-dielectric-slotted metal structure

� A good confinement and a propagation length of 10 µm is 

observed
17* Courtesy: Ms. Padmaja, Research Scholar, EE Dept, IIT Bombay
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� Transient: 

� Transient magnetic analysis is a technique for calculating 

magnetic fields that vary over time, such as those caused by 

surges in voltage or current or pulsed external fields

� Performance parameters such as inrush current, eddy 

currents and forces can be computed when electrical 

machines are subjected to transient stresses.

18
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Potentials Used in Computational Electromagnetics

� Electric scalar potential (V):

� Used in electrostatic formulations: Insulation design in high 

voltage equipment

� Analysis of frequency-dependent performance of dielectrics

If the effects of magnetic field can be neglected, 

19
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� Magnetic vector potential (A):

� In the case of 2-D models, the formulation based on magnetic 

vector potential (MVP) is generally used

� The number of unknowns at any point reduce from 2 (Bx, 

By) to one (Az), with the current in z-direction

� However in 3-D models, the MVP formulation has three 

degrees of freedom per node, Ax, Ay and Az, making it 

computationally unattractive

� MVP formulation can be used for static, time-harmonic or 

transient magnetic analyses

� If there are eddy current regions, additionally the electric scalar 

potential needs to be considered (A-V, A formulation)

20

d d    
S L

ϕ = ⋅ = ⋅∫∫ ∫B S A l�
Flux passing through any two points 1 

and 2 → φ = A1 – A2  (2-D case)
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� Magnetic scalar potential (Ω):

� In 3-D problems, A has three unknowns at every point 

� The scalar potential formulation has only one degree of 

freedom per node

� The magnetic scalar potential based formulation is therefore 

suitable for 3-D magnetostatic problems 

� The scalar potential cannot be used for current carrying regions

and/or in any part which surrounds such regions

� Reduced scalar potential is used to circumvent above 

restrictions

� Reduced Scalar Potential (Ωr) or Total Scalar Potential (Ω) is 

selected as variable depending on presence and absence of 

current carrying domains, respectively: Hybrid formulation 

21
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� Electric Vector Potential (T)

� Used for solving eddy current problems

� Compare with: 

� T represents induced eddy currents like the term              does in 

the A-based formulation

� The formulation is advantageous for the analysis of eddy 

currents in laminated structures

22

∇× =T J
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� Nodal Vs Vector (Edge) Elements

� Nodal formulation: Popularly used for low frequency 

computations

� Simpler and easy to implement

� ‘Scalar’ FEM

� Edge elements: Better suited for high frequency computations

� Degrees of freedom are associated with edges

� Continuity of tangential components of field vectors is 

ensured

� Spurious modes/solutions are avoided as the divergence 

condition is satisfied

� They are better in handling singularities

23
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Coupled Field Computations
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About Coupled Fields

� Classification: 

� Weakly coupled 

� Strongly coupled

� Weak or indirect coupling:

� Solution of one field acts as load to another field

� It is flexible, modular and easy approach 

� Strong or direct coupling:

� Coupled field equations are solved simultaneously

� The approach is used when field interactions are highly 

nonlinear and the coupled fields have comparable time 

constants.
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Coupled interactions 

in Transformers

Coupled Systems: Real-Life Design Problems 

S. V. Kulkarni, “Coupled Field 

Computations for Analysis of Intricate 

Phenomena in   Transformers,” Advanced 

Research Workshop on Transformers, 

Baiona, Spain, October, 28-31, 2007, pp. 

172-186
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Coupled Field Computations

Circuit – Field
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Field-Circuit Coupling

Electromagnetic model:

Circuit coupling:

z z
z

A A
J

x x y y

∂ ∂ ∂ ∂ 
υ + υ = −  

∂ ∂ ∂ ∂   

28
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Conductor Models

str

strstr
str

A

IN
J =

t

A
σ

l

V
σJ z

sol

sol
sol

∂

∂
−=

Stranded conductor: Solid (massive) conductor:

29
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Field-Circuit Coupling

1 1z z

z

A A
J

x x y yµ µ

  ∂ ∂∂ ∂
+ = −  

∂ ∂ ∂ ∂   
 str str

z

str

N I
J

A
=

Finite element discretization leads to:

{ } { }K A P I 0+ =      

K
T T
e e e e

e

N N N N
dxdy

x x y y
Ω

∆

 ∂ ∂ ∂ ∂
= υ +      ∂ ∂ ∂ ∂ 
∑ ∫∫

P

e

Tstr
e

str

N
N dxdy

A
Ω ∆

=   ∑ ∫∫

where, 

FEM formulation for stranded conductor

30
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Field-Circuit Coupling

Global system of equations is given as:

φ
Ω

∂
= ∫ Ω

∂
str z

str

L Ad
d

dt A t

{ } { }
   

= + +         
   

d d

dt dt

Φ I
U R I L

{ } { }
   

= + +             
   

d d

dt dt

A I
U G R I L

{ }
{ }

{ }
{ }

{ }
{ }

A0 0 K P A 0

G L 0 R I UI

                           + =        
                              

�

�

Circuit equations can be written as:

31
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� Internal Current Equation:

� Field Equation:

� Circuit Equation:

t

A

l

V

y

A

yx

A

x

z

sol

zz

∂

∂
+−=









∂

∂

∂

∂
+









∂

∂

∂

∂
σσ

µµ

11

Ω
∂

∂
∫−= Ω d

t

A
VGI z

sol σ

{ } { } [ ]{ } [ ]
d

dt

 
 
 

I
U = V + R I + L
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{ }
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T

T

d
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        
        
        
        
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Coupled Field Formulations: Solid ConductorCoupled Field Formulations: Solid Conductor
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1. Half-Turn Effect

Measured FEM

Flux density in 

end limbs (T)

1.04 0.93

Extra core loss 

due to the half-

turn effect (kW)

4.2 3.9

Flux density (T) for unbalanced currents in windings

Balanced 10% unbalance 20% unbalance

Without half-turn 0.02 0.035 0.045

With half-turn 0.04 0.108 0.25

Single-phase three-limb transformer 

Three-phase five-limb transformer 

G. B. Kumbhar, S. V. Kulkarni, and V. S. Joshi, “Analysis of half-turn effect in power 

transformers using nonlinear-transient FE formulation,” IEEE Trans. Power Delivery,

vol. 22, no. 1, Jan 2007, pp. 195-200.
33
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2. Forces in Split-Winding Transformer

Contour lines of magnetic vector potential 

(a) One winding short circuited (b) Both windings short 

circuited

34

G. B. Kumbhar, S. V. Kulkarni, and V. S. Joshi, “Analysis of short circuit  performance 

of split-winding transformer  using coupled field-circuit approach,” IEEE Trans. Power 

Delivery, vol. 22, no. 2, April 2007, pp. 936-943.
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3. Coupled Circuit – Field Analysis:

Interphase Transformer (IPT)

Flux in the IPT Core

Unbalanced 

case

Balanced case

R. S. Bhide, G. B. Kumbhar, S. V. Kulkarni, and J. P. Koria, “Coupled circuit-field 

formulation for analysis of parallel operation of converters with interphase transformer,”

Electric Power Systems Research. Vol. 78, Issue 1, January 2008, pp. 158-164.
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Coupled Field Computations

Magnetic – Thermal
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Magnetic-Thermal Coupling

� The 2-D transient magnetic and

thermal equations are

These are coupled by the following

relations

( ) ( ) ( )
∂ 

∇ ⋅ ∇ = − σ + σ 
µ ∂ 

1 z
z

AV
A T T

l t

( )( ) ( ) ∂
∇ ⋅ ∇ = − +

∂
,z

T
k T q A T mc

t

( )
( )( )
σ

σ =
+ α −1

ref

ref

T
T T

( )
Ω

∂ 
= σ − + Ω 

Ω ∂ ∫
2

1
, ( )

e

z
z

e

AV
q A T T d

L t

� Convection boundary

conditions

( ) ( ) 0=−+⋅∇ ac TThnTk

37
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Magnetic-Thermal Coupling

38
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Formulation

� Magnetic equations for solid conductors (g=-V/L)

� In matrix form                          

� Elemental loss

( )

( )

0 0

1 1

c

z z
z

z c

A A
g j A

x x y y

I g j A d

Ω

   ∂ ∂∂ ∂
+ = σ + ω   

∂ µ ∂ ∂ µ ∂   

= σ + ω Ω∫

K+ V W A

g IW G'

0
T

j

j

ω     
=     

ω      

K
T T
e e e e

e

N N N N
dxdy

x x y y
Ω

∆

 ∂ ∂ ∂ ∂
= υ +      ∂ ∂ ∂ ∂ 
∑ ∫∫

[ ]V
e

T

e eσ N N dx dy
∆

Ω

=∑ ∫∫

W

e

T
eN dxdy

Ω ∆

= σ   ∑ ∫∫

( )( )
Ω

= σ + ω + ω Ω∫
*

e

e z z eQ g j A g j A d
G’ is the diagonal matrix of the

conductance of the bars

39
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1. High Current Terminations

Unequal Current Distribution Non-uniform Temperature distribution

G.B. Kumbhar, S.V. Kulkarni, R. Escarela-Perez, 

and E. Campero-Littlewood, “Applications of 

coupled field formulations to electrical 

machinery,” COMPEL Journal, Vol. 26, Issue 2, 

2007, pp. 489-523. 
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2. Induction Hardening

Sanjay Patil, Simulation of auto-tempering of induction hardened crackshaft steel, M.Tech

Thesis, MEMS Dept, IIT Bombay, 2011.

Temperature distribution

Auto-tempering process



II
T
 B
o
m
b
a
y

42

Coupled Field Computations

Magnetic – Structural



II
T
 B
o
m
b
a
y

Coupled Field Formulations: Magnetic-Structural

� Coupled Equations:

K and M are magnetic and 

mechanical stiffness matrices 

respectively. A and X are nodal 

values of magnetic vector potential 

and displacements.

�The formulation with suitable modifications can be used for:

- Analysis of core noise: Magnetostriction phenomenon

- Computation of noise due to winding vibrations (J x B Force)

- Analysis of winding deformations due to short circuit forces

- Design of high current carrying bars in large rectifier and 

furnace duty applications 

[ ] [ ]
[ ] [ ]

{ }
{ }

{ }
{ }ext

K C

N M

       
     
         

A J
=

X F
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- [N] and [C] are the coupling matrices, and {J} and {F
ext

} are the 

column vectors representing the magnetic and mechanical source 

terms, respectively. 

-The term [N] represents the effect of magnetic parameters on 

mechanical displacements, whereas [C] represents the effect of 

mechanical displacements on magnetic parameters. 

- It can be proved that the total magnetic force (F
mag

) can be 

represented by –[N]{A}

-If the effects of displacements on magnetic fields are not 

appreciable, [C] can be neglected and the magnetic forces affecting 

displacements can be added to the mechanical (external) forces:

[ ] [ ]
[ ] [ ]

{ }
{ }

{ }

{ }
0

0
ext mag

K
=

M +

       
     
         

JA

X F F

-The magnetostriction phenomenon can also be considered in a weakly 

coupled scheme by adding the corresponding vector {Fms} to the force 

terms



II
T
 B
o
m
b
a
y

Coil

 Pipe

Electromagnetic Forming

Simulation Verification



II
T
 B
o
m
b
a
y

46

Concluding Remarks
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Current and Emerging Trends

� Competence in 3-D analysis is essential

� Coupled field computations (circuit-field, magnetic-thermal, 

magnetic-structural) will be increasingly used

� Coupled EM-thermal-structural analysis is not uncommon these 

days

� Hybrid numerical techniques are being used for complex problems

� Other trends

� Parallel computing

� Real time FEM

� Meshless methods

� Wavelet based FEM
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Thank You !
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