See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection
2009 - Bostonx

Fluid Dynamics of Blood Flow during Reperfusion and Post-conditioning

T. Merrill[1], A. La Barck[1], and J. Docimo[2]
[1]Rowan University, Glassboro, New Jersey, USA
[2]FocalCool, LLC, Mullica Hill, New Jersey, USA

Reperfusion injury is caused by the rapid restoration of blood flow to oxygen-starved tissue. Animal studies show that intermittent periods of occlusion (also called post-conditioning) during reperfusion can limit tissue damage to vital organs such as the heart and brain. These studies ... Read More

Reliability Evaluation for Static Chamber Method at Landfill Sites

H. Ishimori[1], K. Endo[1], and M. Yamada[1]
[1]National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan

In this study, COMSOL Multiphysics was used for the reliability evaluation for static chamber method at landfill sites. Static chamber method, which measures landfill gas emission fluxes, is widely used at landfill sites for the monitoring of greenhouse gas emission such as methane and ... Read More

Simulation of the Turbulent Flow in HEV Static Mixers : Mixing of Ethanol with Gasoline

A. Eissa[1]
[1]Department of Chemical Engineering, Cairo University, Giza, Egypt

Mixing is a typical unit operation that occurs almost in all chemical industries. Static – alternatively termed motionless – mixers are being widely used due to their low power consumption, low capital investment, minimal maintenance costs and versatility. The traditional ... Read More

COMSOL Derived Universal Scaling Model For Low Reynolds Number Viscous Flow Through Microfabricated Pillars – Applications to Heat Pipe Technology

N. Srivastava[1], and C.D. Meinhart[1]
[1]Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara California, USA

Cooling of high-power density electronic devices remains a challenge. Microfluidic heat-pipes with the potential of achieving ultra-high thermal conductivities offer a low-cost technology for cooling electronics. To achieve high thermal conductivity, it is critical to maximize the rate ... Read More

Analysis of Transient Electromagnetic Dipole

J.C. Crompton[1], K.C. Koppenhoefer[1], and S.Y. Yushanov[1]
[1]AltaSim Technologies, LLC, Columbus, Ohio, USA

This paper presents the solution of a transient electromagnetic problem using COMSOL Multiphysics. The paper also presents a closed-form solution of a transient electromagnetic dipole. The computational solution compares well with a closed-form solution for this problem. This work ... Read More

Finite Element Analysis of Microscale Luminescent Glucose Sensors in the Skin Dermis

S. Ali[1], and M. McShane[1]
[1]Department of Biomedical Engineering, Texas A&M University-College Station, Texas, USA

With the rising predominance of diabetes, successful management of blood glucose levels is increasingly important. Key efforts have focused on the development of optical microscale glucose sensing systems based on the encapsulation of glucose oxidase within microspheres coated with ... Read More

Negative Thermal Expansion Materials: Thermal Stress and Implications for Composite Materials

M.J. Jakubinek[1,2], C.A. Whitman[2,3], and M.A. White[1,2,3]
[1]Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
[2]Institute for Research in Materials, Dalhousie University, Halifax, Nova Scotia, Canada
[3]Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada

There is considerable interest in the possibility of combining NTE materials with normal (positive) thermal expansion materials, to reduce the potential of failure of a material or component due to thermal stress fracture. Finite element analysis (FEM) is used to explore the overall ... Read More

Optimization of a Thermal Actuator for Low Power/Low Cost Applications

R. Zúñiga-Quesada[1], M. Vílchez-Monge[1], P. Vega-Castillo[1]
[1]Instituto Tecnológico de Costa Rica, Cartago, Costa Rica

This work describes the study of a thermal actuator and modifications to the materials employed in order to decrease power consumption and implementation costs. For this study, we worked on improving the thermal actuator described in the work of T. Ebefors. The criteria for choosing the ... Read More

Viscous damping of a periodic perforated MEMS microstructure when the Reynolds’ equation cannot be applied: Numerical simulations

D. Homentcovschi[1], and R.N. Miles[1]
[1]Department of Mechanical Engineering, SUNY Binghamton, NY

This paper develops a computational model for determining the total damping coefficient for a unit cell of a MEMS microscale device containing a repetitive pattern of holes. The basic cell of the microstructure is approximated by an axi-symmetric domain and the velocity and pressure ... Read More

Finite Element Modeling a Redox-Enzyme-Based Electrochemical Biosensor

Y. Huang[1], and A. Mason[1]
[1]Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, USA

This paper describes the modeling of an electrochemical biosensor embedded in a microfluidic channel to determine the concentration of a target biomolecule. The total amount of analyte in the sample can be calculated by integrating the analyte concentration over the duration of the peak ... Read More