See How Multiphysics Simulation Is Used in Research and Development


Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection
2011 - Bostonx

Laminar Fluid Flow and Heat Transfer Studies of an Electrical Conducting Fluid Subject to Combined Electric and Magnetic Fields

E. Gutierrez-Miravete[1], T. DePuy[2], and X. Xie[2]
[1]Rensselaer at Hartford, Hartford, CT
[2]Pratt & Whitney, East Hartford, CT

The flow of electrically conducting fluids such as liquid metals is significantly affected by applied electric and magnetic fields. The effect has important industrial applications in metallurgy, nuclear technology and other fields. This paper described results of a series of studies ... Read More

Study on the Holding Characterestics of a Magnetic Gripper

R. Wadhwa[1], G. Monkman[2], and T. Lien[1]
[1]NTNU Valgrinda, Inst. for produksjons- og kvalitetstek., Trondheim, Norway
[2]FH Regensburg, Regensburg, Germany

Magnetic grippers are commonly used for workholding in handling and assembly of ferrous metalcasted parts. The workholding force produced by the magnetic gripper is strongly influenced by the texture and form of the workpiece in contact with its surface. This work explores the ... Read More

Modeling of Tumor Location Effect in Breast Microwave Imaging using COMSOL

E. Khosrowshahli[1], and A. Jeremic[2]
[1]School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
[2]McMaster University, Dept. of Electrical and Computer Engineering, McMaster University,
Hamilton, ON, Canada

Microwave imaging has been recently proposed as a potentially useful screening technique for breast cancer. This method detects abnormalities in the tissue based on permittivity difference between breast normal and malignant tissue. In this method breast is illuminated by high frequency ... Read More

Simulation of Dendritic Solidification in Cubic and HCP Crystals by Cellular Automaton and Phase-Field Models

M. A. Zaeem[1], H. Yin[2], and S. D. Felicelli[3]
[1]Center for Advanced Vehicular Systems, Mississippi State University, MS
[2]Oak Ridge National Laboratory, TN
[3]Mechanical Engineering Department, Mississippi State University, MS

A cellular automaton (CA)-finite element (FE) model and a phase field (PF)-FE model were used to simulate equiaxed dendritic growth during solidification of cubic and hexagonal crystals. The governing equations of PF model include three coupled partial differential equations (PDE) for ... Read More

Simulation of an Atmospheric Pressure Direct Current Microplasma Discharge in He/N2

L. Tong
Keisoku Engineering System Co. Ltd.
Tokyo
Japan

A study of an atmospheric pressure direct current microplasma discharge in He/N2 is performed using COMSOL Multiphysics. The calculation of heat transfer is fully coupled with the plasma simulation so as to resolve the gas heating in discharges. A simple circuit model is used to decide ... Read More

Modeling Linear Viscoelasticity in Glassy Polymers using Standard Rheological Models

M. Haghighi-Yazdi, and P. Lee-Sullivan
University of Waterloo
Waterloo, ON
Canada

In this study, a capability has been developed for modeling the linear viscoelastic behaviour of a glassy polymer using COMSOL Multiphysics®. The two rheological models by Maxwell and Kelvin-Voigt were used for modeling stress relaxation and creep loading behavior, respectively, of a ... Read More

Simulating Performance and Species Crossover in a Vanadium Redox Flow Battery using COMSOL Multiphysics

E. Agar, K. Knehr, C. Dennison, and E. Kumbur
Electrochemical Energy Systems Lab.
Dept. of Mechanical Eng. and Mechanics
Drexel University
Philadelphia, PA

Vanadium redox flow batteries (VRBs) are a promising new energy storage technology designed for use in long term applications such as uninterruptible power supply and coupling with renewable energy sources (i.e. wind and solar). Crossover is the undesired transport of vanadium ions ... Read More

Finite Element Analysis of Integrated Circuit Interconnect Lines on Lossy Silicon Substrate

S. Musa[1], M. Sadiku[1], and A. Emam[2]

[1]Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX
[2]Information Systems Department, King Saud University, Riyadh, Saudi Arabia

The silicon substrate has a significant effect on the inductance parameter of a lossy interconnect line on an integrated circuit. It is essential to take this into account in determining the transmission line electrical parameters. In this paper, a new quasi-TEM capacitance and ... Read More

Coupled Gas Flow and Thermal and Reactive Transport in Porous Media for Simulating Waste Stabilization Phenomena in Semi-Aerobic Landfill

H. Ishimori, K. Endo, T. Ishigaki, H. Sakanakura, and M. Yamada
National Institute for Environmental Studies
Tsukuba, Ibaraki
Japan

Semi-aerobic landfill has interesting structure that passively provides the atmospheric oxygen into landfilled waste due to the heat convection generated by the decomposition of landfilled waste. There are limited studies on the mechanisms of the oxygen transport. This paper presents the ... Read More

Study of Hard-and Soft- Magnetorheological Elastomers (MRE’s) Actuation Capabilities

J. Roche[1], P. Von Lockette[1], and S. Lofland[2]
[1]Mechanical Engineering Dept., Rowan University, Glassboro, NJ
[2]Physics and Astronomy Dept., Rowan University, Glassboro, NJ

In this study, magneto-rheological elastomer (MRE) composite beams made of Barium hexaferrite (BaM) and Iron (Fe) powders combined with a highly-compliant matrix material were simulated using COMSOL\'s Solid Mechanics and AC/DC modules. The goal of the work was to develop models capable ... Read More