Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Simulation of the Functional Electromagnetic Stimulation of the Human Femoral Bone using COMSOL

Y. Haba[1], W. Kröger[2], H. Ewald[2], R. Souffrant[1], W. Mittelmeier[1], and R. Bader[1]

[1]Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, University of Rostock, Rostock, Germany
[2]Institute of General Electrical Engineering, University of Rostock, Rostock, Germany

In the present study we determined the relative conductivities and permittivities of fresh cortical and cancellous bone measuring human femoral heads in different slices of 1 mm thickness. The identified conductivities of human trabecular bone are used for the electromagnetic field simulation by means of COMSOL using a Micro-Computed Tomography (Micro-CT) model. The calculated model depends on a ...

Some Clinical and Computational Studies On Haemodynamics In Stenosed Artery

A. Chanda, A.R. Choudhury, G. Ray, K. Dasgupta, and D. Nag
Jadavpur University, Kolkata, West Bengal, India

Atherosclerosis in arteries is caused by the formation of stenosis : fatty depositions, on the artery wall. In current medicine, the practice is to observe the maximum percentage occlusion at any arbitrary cross-section and diagnose the patient on that basis, which might not always present the real picture due to non-uniformity of the stenosis thickness. The present work attempts to simulate the ...

Modeling Acoustic Waveguides for Ear Impedance Measurements

R. Sisto[1], L. Cerini[1], D. Mambro[2], A. Moleti[2], F. Sanjust[1]
[1]INAIL Research, Monteporzio Catone, Italy
[2]Università di Roma, Tor Vergata, Italy

The otoacoustic emissions (OAEs) are acoustic signals emitted by the inner ear as a consequence of the activity of a nonlinear feedback mechanism capable of amplifying the signal near to the hearing threshold level. The otoacoustic emissions can be used as an acoustic imaging of the cochlear functionality. They are used in clinics for screening purposes but due to the extreme variability ...

Finite Element Analysis Approach for Optimization of Enzyme Activity for Enzymatic Bio-fuel Cell

Y. Song, and C. Wang
Florida International University, Miami, FL, USA

Enzymatic biofuel cells (EBFCs) are miniature, implantable power sources, which use enzymes as catalysts to perform redox reaction with biological fuels such as glucose. In this study using COMSOL Multiphysics, we use an EBFC chip, having three dimensional, highly dense micro-electrode arrays, fabricated by C-MEMS micro-fabrication techniques. Glucose oxidase (GOx) is immobilized on anodes for ...

Microwave Inactivation of Bacteria Under Dynamic Heating Conditions in Solid Media

S. Curet[1], M. Mazen Hamoud-Agha[1]
[1]GEPEA, UMR 6144, CNRS, ONIRIS, Université de Nantes, Nantes, France

In this study, COMSOL®4.2a is used to model a microwave heating process in a TE10 rectangular waveguide. The sample consists of a small cylindrical Ca-alginate gel (D = 8 mm, H = 10 mm) inoculated with bacteria Escherichia Coli K12. The sample is placed along the microwave propagation direction into the waveguide. Maxwell’s equations and heat transfer are coupled to a microbial inactivation ...

Human Torso Model for Heat Transfer Analysis

X. Xu[1], T. Patel[1], R.W. Hoyt[1]
[1]U.S. Army Institute of Environmental Medicine, Natick, MA, USA

A human torso model was created for heat transfer analysis. The torso was derived from the ‘Virtual Family’ whole-body voxel data from the ITIS Foundation (Zurich, Switzerland). Measurements were taken from the ITIS male along the axial plane at key anatomical landmarks and used to develop geometry in Solidworks. Individual components were created to represent the skin, fat, muscle, and bone ...

Dried Reagent Resuspension for Point of Care Testing (Analysis at the Patient Bedside)

M. Huet [1],
[1] Department of Biotechnology, CEA/Université Grenoble-Alpes, Grenoble, France

A microfluidic component was designed to collect blood from a finger prick by capillary flow and to perform biological analysis. It was used to perform ABO blood typing experiments in one step, the blood drop deposit, by agglutination of red blood cells (RBC) using embedded dried reagents. The present study is a first step in the modeling of the whole agglutination assay. Blood typing ...

Modeling of an Oxygenation-Aided 3D Culture for Functional Beta-Cell Expansion

S. Jin[1], J. McReynolds[1], X. Li[2], J. Guan[2]
[1]Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, USA
[2]Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA

Currently, researchers are looking for ways to mass-produce biologically functional pancreatic beta cells in vitro because of the shortage of donor tissue needed for diabetes cell therapy. The beta cells will become hypoxic if their high oxygen demands are not met. We hypothesized that the biological function of beta cells can be improved if they are cultured in a 3D collagen scaffold, which ...

Biofluid-Structural Interaction in Abdominal Aortic Aneurysm for Predicting Timeline to Rupture: The Effect of Hypertension and Aorta Wall Material Properties - new

K. Cluff[1], H. Mehraein[1], G. Jayakumar[2]
[1]Bioengineering, Wichita State University, Wichita, KS, USA
[2]Industrial & Manufacturing Engineering, Wichita State University, Wichita, KS, USA

An abdominal aortic aneurysm (AAA) is a bulge formed in the large blood vessels that supply blood to the abdomen, pelvis, and legs. A fluid structure interaction model was developed in a 3D aortic aneurysm model, which was constructed from abdominal CT scan images. Combining medical imaging and computational fluid dynamics (CFD) in a time dependent study allowed the determination of wall ...

Updated Results of Singlet Oxygen Modeling Incorporating Local Vascular Diffusion for PDT - new

R. Penjweini[1], M. M. Kim[1], T. C. Zhu[1]
[1]Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA

Introduction: Singlet oxygen (¹O₂) has a critical role in the cell-killing mechanism of photodynamic therapy (PDT). Therefore, in this study, the distance-dependent reacted ¹O₂ is numerically calculated using finite-element method (FEM). Herein, we use a model [Ref. 1] that has been previously developed to incorporate the diffusion equation for the light transport in tissue and the macroscopic ...