See How Multiphysics Simulation Is Used in Research and Development


Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection
MEMS and Nanotechnologyx

A Study of the Effects of Mounting Supports, and Dissipation on a Piezoelectric Quartz Double-Ended Tuning Fork Gyroscope

G. Choi[1], Y. Yong[1]
[1]Rutgers University, New Brunswick, NJ, USA

A COMSOL model of a piezoelectric quartz double ended tuning fork gyroscope was implemented. The gyroscope has two detection modes; the first mode detects the angular velocity about a z-axis perpendicular to the tuning fork plane (x-y plane), while the second mode detects the angular ... Read More

Polymer Nanowire based Impedance Biosensor

N. Das[1], C. R. Chaudhuri[1]
[1]Department of Electronics and Telecommunication, BESUS, Howrah, West Bengal, India

In this paper, we have proposed an impedance biosensor based on polymer nanowire (made of polyaniline) for efficient electric field mediated capture of biomolecules. Existing polymer nanowire based biosensors fail to achieve high sensitivity for low surface to volume ratio as the whole ... Read More

Multiphysics and Simulation of MEMS based Bolometer for Detecting the Radiations in Nuclear Power Plants

K. Umapathi[1], S. Swetha[2], K. Ranjitha[2], K. Vinodh[2], K. Deebiga[1], R. Harisudarsan[1]
[1]United Institute of Technology, Coimbatore, TamilNadu, India
[2]Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu, India

High performance micro sensors are important to detecting special nuclear materials radiations in different fields to save the globe. This paper is mainly focused on to develop a MEMS based bolometer for detecting the nuclear radiation to provide the high security in Nuclear power ... Read More

Actively Controlled Ionic Current Gating In Nanopores

G. Zhang[1], S. Bearden[1]
[1]Clemson University, Clemson, SC, USA

It is necessary to understand and control nanopore behavior in order to develop biosensors for a variety of applications including DNA sequencing. The fluidics of nanopore devices we fabricated exhibits a range of interesting phenomena, such as enhanced conductance and current ... Read More

3D Printed Microfluidic Medical Devices: Rapid Prototyping Using LiveLink™ for MATLAB®

A. P. Spann [1], M. J. Hancock [1],
[1] Veryst Engineering LLC., Needham, MA, USA

Recent advances in additive manufacturing enable rapid production of low-cost custom devices.[1-2] Despite modern 3D printers apparent resolutions on the order of tens of microns, for microfluidic applications there are challenges associated with the creation of channels below a few ... Read More

Green's Function Approach to Efficient 3D Electrostatics of Multi-Scale Problems

C. Roman [1], L. Schmid [1], L. Stolpmann [1], C. Hierold [1],
[1] ETH, Zurich, Switzerland

We present an efficient method to compute efficiently the general solution (Green's Function) of the Poisson Equation in 3D. The method proves its effectiveness when dealing with multi-scale problems in which lower dimensional objects, such as nanotubes or nanowires (1D), are embedded in ... Read More

Designing the Actuator for the Next-Generation Astronomical Deformable Mirrors: a Multidisciplinary and Multiphysics Approach

C. Del Vecchio[1], R. Biasi[2] , D. Gallieni[3], and A. Riccardi[1]

[1]INAF-OAA, Fierenze, Italy
[2]Microgate Srl, Bolzano, Italy
[3]ADS International Srl, Valmadrera, Italy

The actuation system of the deformable mirror is one of the crucial components of an Adaptive Optics unit. One possible implementation comprehends a linear force motor and a capacitive sensor providing the feedback measure signal. Choosing a magnetic circuit that makes optimum use of the ... Read More

A Methodology For The Simulation Of MEMS Spiral Inductances Used As Magnetic Sensors

S. Druart, D. Flandre, and L.A. Francis
Université catholique de Louvain - ICTEAM, Louvain-la-Neuve, Belgium

In this paper, a methodology to simulate the electric behavior of spiral inductances is presented and discussed. All the methodology is built with the COMSOL software used with the Matlab scripting interface and then allows performing fully parameterized simulations. The program ... Read More

Simulation of Thermal Sensor for Thermal Control of a Satellite using COMSOL

G. Mangalgiri
BITS Pilani
K K BIRLA GOA CAMPUS
Zuarinagar, Goa
India

Spacecrafts have a prime necessity that their temperature be controlled. This paper presents the simulation of a mechanically actuated field effect transistor that is used in a thermal system. It comprises of a composite beam, a piezoelectric substrate and a field effect transistor. The ... Read More

FEM-Simulation of a Printed Acceleration Sensor with RF Readout Circuit

H. Schweiger[1], T. Göstenkors[1], R. Bau[1], D. Zielke[1]
[1]Dept. Engineering Sciences and Mathematics, University of Applied Sciences Bielefeld, Bielefeld, Germany

In this paper we want to figure out the development of a capacitive acceleration-sensor system with the FEM-Method. The sensor-system is in the position to detect accelerations in the range of ±20 g. Furthermore the sensor-element contains a printed RF-inductance, which is used for ... Read More