Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Simulation and Fabrication of Wireless Passive MEMS Pressure Sensor

E.A. Unigarro Calpa[1], D.A. Sanz Becerra[1], A. Arciniegas[2], F. Ramirez[1], F. Segura-Quijano[1]
[1]Universidad de los Andes, Bogotá, Colombia
[2]Instituto Barraquer de América, Bogotá, Colombia

A wireless passive pressure sensor and the measurement system were design and simulated using COMSOL 4.3. The sensor is based on MEMS capacitor attached to a planar inductor for wireless powering and readout. An external coil is used for the measuring system. The pressure to be measured compresses the MEMS capacitor and changes sensor\'s resonance frequency. COMSOL 4.3 was used for the analysis ...

Design and Simulation of MEMS-based Sensor for Artificial Hand

P. Prema[1], Sakthivishnu.R[1], Sowmya. R[1], Chandra Devi K[1], Meenakshi Sundaram. N[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India

An artificial hand is the one that replaces the hand lost through trauma, disease, or congenital conditions. The proposed design is to simulate a sensor, used in prosthetic hand so as to measure the pressure required to hold the object, using COMSOL Multiphysics®. The physical parameters such as size, shape and mass of the object were optimized so as to hold an object. The weight of the object ...

Particle Flow Control by Magnetically Induced Dynamics of Particle Interactions

F. Wittbracht[1], A. Weddemann[1], A. Auge[1], and A. Hütten[1]

[1]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

In this work, we show that dipolar magnetic coupling can be used to control the particle flow through microfluidic structures without changing the state of motion of the carrier liquid. Also no external magnetic gradient fields are employed; the total external magnetic force applied is therefore zero. The theoretical idea will be tested experimentally. Here, additional effects originating from ...

Design and Development of Microsystems within a Corporate Research Environment by Utilizing Comsol Multiphysics

A. Frey
Siemens AG
Corporate Research & Technologies
Munich, Germany

Alexander Frey received his M.A. degree from the University of Texas, Austin, in 1994, the Dipl. Phys. degree from the University of Wuerzburg, Germany in 1997 and the PhD from the Saarland University, Germany in 2010. In 1997 he joined Research Laboratories of Siemens working on the design of DRAM sensing circuits. In 1999 he joined Corporate Research, Infineon, Munich, Germany. He was engaged ...

Design and Analysis of Implantable Nanotube Based Sensor for Continuous Blood Pressure Monitoring

M. Silambarasan, T. Prem Kumar, M. Alagappan, and G. Anju
PSG College of Technology
Coimbatore
Tamil Nadu, India

The present work aims to develop a blood pressure sensor using MEMS/NEMS technology. A normal blood pressure detector is used externally, but this work mainly aims for designing an implantable nanotube based sensor for continuous monitoring of blood pressure. The use of COMSOL Multiphysics 4.1 acts as a good platform to develop a nano tube based sensor design by using the MEMS module. The ...

Carbon Nanotube Based Mass Sensor Using Atomic Resolution Nanomechanical Resonators

M. Roshini[1], G .B. Priyanga[1], K. C. Devi[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India

The objective of this paper is to design and simulate Carbon Nano-Tube (CNT) based mass sensor that determines extremely low measures of molecules using COMSOL Multiphysics® software. The ultimate goal of this nanomechanical resonator sensor is that it allows detection at single molecular level. The change in the mass from the resonator can cause a shift in the resonant frequency. The ...

MEMS Based Tactile Sensors for Robotic Surgery

V. Nivethitha[1], S. P. Rakavi[1], K. C. Devi[1]
[1]PSG College Of Technology, Coimbatore, Tamil Nadu, India

In this work, a piezoelectric tactile sensor will be designed and simulated using COMSOL Multiphysics®. The sensor is designed in order to assess the pressure exerted on the human body while the robotic surgery is performed. The sensor consists of a rigid and compliant cylindrical element. A circular PDMS (Polydimethylsiloxane) film is sandwiched between the rigid cylinder and the base plate to ...

COMSOL在压阻式柔性压力传感器中的应用

王宗荣 [1,2], 王珊 [1],
[1] 浙江大学,杭州,中国
[2] 香港大学,香港,中国

引言:柔性压力传感器在电子皮肤、智能假肢以及医疗监测诊断等领域发挥着十分重要的作用。因此压力传感器需要很高的灵敏度、较宽的敏感区间及稳定的性能。利用典型有机硅 PDMS 作为支撑层,聚合物 PEDOT: PSS 作为导电感应层制得的高度不均一微突结构的双压敏机制压阻传感器灵敏度达到了 851kPa-1。其探测范围广,性能优异,为解决目前压阻传感器中灵敏度低、敏感压力区间窄的难题提供了新思路。 COMSOL MULTIPHYSICS® 软件的使用:本文利用 COMSOL Multiphysics® 软件建立了不均匀微突结构的压阻式传感器模型,采用了结构力学与电流场两个物理场,通过电子接触对进行多物理场的耦合。研究在指定位移情况下,压阻式传感器电阻与电流的变化,从而得到灵敏度,验证不均匀微突结构压阻式压力传感器的双作用机制。同时,与均一微金字塔结构的压力传感器进行比较 ...

Simulations of Micropumps Based on Tilted Flexible Structures - new

M. J. Hancock[1], N. H. Elabbasi[1], M. C. Demirel[2]
[1]Veryst Engineering, LLC., Needham, MA, USA
[2]Pennsylvania State University, University Park, PA, USA

Pumping liquids at small scales is challenging because of the principle of reversibility: in a viscous regime, the flow streamlines through a fixed geometry are the same regardless of flow direction. Recently we developed a class of microfluidic pump designs based on tilted flexible structures that combines the concepts of cilia (flexible elastic elements) and rectifiers (e.g., Tesla pump). We ...

Numerical Analysis of the Impact of Geometric Shape Patterns on the Performance of Miniaturized Chromatography Systems

R. Winz[1], E. von Lieres[2], and W. Wiechert[1]
[1]Department of Simulation, University of Siegen, Siegen, Germany
[2]Institute of Biotechnology, Research Centre Jülich, Siegen, Germany

We have implemented a two dimensional chromatography model for the analysis and optimization of structured micro pillar arrays. Dynamic surface interaction of solved molecules is taken into account by the kinetic Langmuir model. Variations of the pillar array geometry lead to deviations in the outlet concentration profiles. These deviations cannot be described by the one dimensional models that ...