See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2019 Collection

Can Oscillatory Convection Accelerate Signal Propagation in Simple Epithelium?

M. Nebyla[1], M. Pribyl[1]
[1]Institute of Chemical Technology, Prague, Department of Chemical Engineering, Prague, Czech Republic

We introduce a mathematical model of signal transmission in simple epithelial layers. The mathematical model consists of reaction-transport equations for extracellular ligands, cellular receptors, ligand-receptor complexes and a ligand releasing protease. We consider diffusion and ... Read More

Applicability of the Fracture Flow Interface to the Analysis of Piping in Granular Material

S. Bersan[1], C. Jommi[2], A. Koelewijn[3], P. Simonini[1]
[1]University of Padua, Padua, Italy
[2]Delft University of Technology, Delft, The Netherlands
[3]Deltares, Delft, The Netherlands

Piping is a kind of internal erosion that occurs under water retaining structures lying on a sandy soil. In an attempt to reproduce the growth of erosion channels in sand, a small scale physical model has been set up in the laboratory and a finite element model that reproduces the ... Read More

Analysis of Electro-Thermal Hot Spot Formation in Li-Ion-Battery-Cells

W. Beckert[1], C. Freytag[1], T. Frölich[1], G. Fauser[1]
[1]Fraunhofer IKTS, Dresden, Germany

The presented model approach offers a computational efficient tool to analyze the influences of geometrical design details, material selection and operational conditions on the electro-thermal behavior of a full Li ion battery cell geometry. It considers typical aspects as anisotropic ... Read More

An Investigation of Loudspeaker Simulation Efficiency and Accuracy Using i) A Conventional Model, ii) The Near-To-Far-Field Transformation and iii) The Rayleigh Integral

R. Christensen[1], U. Skov[1]
[1] iCapture ApS, Roskilde, Denmark

Simulation on loudspeaker drivers require a conventional fully coupled vibro-acoustic model to capture all effect. An accurate vibroacoustic model can be time-consuming to solve, especially in 3D. In practical applications, this results in poor efficiency concerning the decision-making ... Read More

Advanced 3D Imaging Coupled to Modeling of Fuel Cell and Battery Electrodes

F. Tariq[1], V. Yufit[1], M. Marinescu[1], G. Cui[1], M. Kishimoto[1], N. Brandon[1]
[1]Imperial College London, London, United Kingdom

Solid Oxide Fuel Cells (SOFC) and Li-ion batteries (LIB) are electrochemical devices where performance is dependent on reactions inside porous electrode microstructures. Here we use tomographic techniques to probe 3D electrode structures (anodes and cathodes) at micro-nanometer length ... Read More

A COMSOL Multiphysics® Model of Droplet Formation at a Flow Focusing Device

A. Abrishamkar[1], A.S. Rane[1], K.S. Elvira[1], R.C.R. Wootton[1], T. Sainio[2], A.J. deMello[1]
[1]Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
[2]Lappeenranta University of Technology, Lappeenranta, Finland

In this work, we numerically investigated the process of droplet generation using water as the dispersed phase and FC-40 oil as the continuous phase in a microfluidic device. We used a two-phase level set method in COMSOL Multiphysics® for our study. The simulations were carried out in a ... Read More

A Computational Approach for Simulating p-Type Silicon Piezoresistor Using Four Point Bending Setup

T.H. Tan[1], S.J.N. Mitchell[1], D.W. McNeill[1], H. Wadsworth[2], S. Strahan[2]
[1]Queen's University Belfast, Belfast, United Kingdom
[2]Schrader Electronics Ltd, Antrim, United Kingdom

The piezoresistance effect is defined as change in resistance due to applied stress. Silicon has a relatively large piezoresistance effect which has been known since 1954. A four point bending setup is proposed and designed to analyze the piezoresistance effect in p-type silicon. This ... Read More

Chromatographic Separation of Tröger’s Base in a Batch Column

A. Fayolas [1], M.G. Sanku[1], M. Pascoa[1], M. Xynou[1]
[1]KTH Royal Institute of Technology, Stockholm, Sweden

The objective of the study is to investigate the chiral separation of Tröger’s base enantiomers using batch chromatography. Because of its resolution, chromatography is often the preferred method for chiral separations. The separation of Tröger’s base is resolved by using the COMSOL ... Read More

Adaptive Numerical Simulation of Streamer Propagation in Atmospheric Air

S. Singh[1], Y. Sedyuk[1], R. Summer[2]
[1]Chalmers University of Technology, High Voltage Engineering, Gothenburg, Sweden
[2]Schneider Electric, Regensburg, Germany

Simulations of streamer discharge was performed by utilizing a space adaptive numerical scheme based on logarithmic representation of mass conservation equations, which governs the transport of charge carriers. Implementation of a model, which describes the propagation of a streamer in ... Read More

Virtual Prototyping of a Microwave Fin Line Power Spatial Combiner Amplifier

A. Leggieri[1], F. Di Paolo[1], D. Passi[1]
[1]University of Rome "Tor Vergata" - Department of Electronic Engineering, Rome, Italy

This paper describes the Virtual Prototyping based on a COMSOL Multiphysics® simulation for a novel Microwave Fin Taper (FT) Spatial Power Combiner (SPC) Amplifier. The analyzed system is waveguide (WG) based, and uses FT Probes to convert the energy of a rectangular WG EM fundamental ... Read More