See How Multiphysics Simulation Is Used in Research and Development


Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection

Modeling and Characterization of Piezoelectric Structures: From Bulk Material to Thin Film

M. Bavencoffe [1], N. Tembhurnikar [1], B. Negulescu [2], J. Wolfman [2], G. Feuillard [1]
[1] INSA Centre Val de Loire, GREMAN, UMR CNRS 7347, 3 rue de la Chocolaterie, 41034 Blois, France
[2] François Rabelais University, GREMAN, UMR CNRS 7347, Parc de Grandmont, 37200 Tours, France

With the development of micro and nanotechnologies, integrated structures based on piezoelectric thin films are widely investigated and their characterization become a crucial issue for the development of new applications. A laser interferometry is here used to assess the mechanical ... Read More

Frequency Response Analysis of a Printed Circuit Board

S. Mathmann[1]
[1]University of Applied Sciences Bielefeld, Department of Engineering Sciences and Mathematics, Bielefeld, Germany

During a practical course the students compare the measured frequency response of an assembled PCB (Printed Circuit Board) with the simulated data out of COMSOL Multiphysics® software. For this the whole PCB with all components are feed in the simulator and afterwards an eigenfrequency ... Read More

CFD Investigation of a Photocatalytic Multi-Tube Reactor for Indoor Air Purification

J. van Walsem [1], J. Roegiers [1], S. Lenaerts [1], S. Denys [1],
[1] Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium

In industrial countries, people spend most of their time indoors. Stringent heat-insulation measures in combination with deficient ventilation have a negative impact on indoor air quality [1]. Integration or retrofitting of a photocatalytic oxidation or PCO reactor into continuous flow ... Read More

Near-Field of Resonating Piezoelectric Membrane Used as Ultrasound Transducer

V. Tzanov [1], J. Munoz [1], F. Torres [1], N. Barniol [1],
[1] Universitat Autonoma de Barcelona, Bellaterra, Spain

Micro-machined ultrasound transducers have a wide range of applications. As a sensor or actuator they can be used for measuring fluid speed and direction, to mix and excite particles (sonication), for taking images (ultrasonography), for non-destructive testing and many other purposes in ... Read More

Mapping the Limitations of Breakthrough Analysis in Fixed-Bed Adsorption

J. Knox [1],
[1] NASA Marshall Space Flight Center, Huntsville, AL, USA

In a recent publication (Limitations of Breakthrough Curve Analysis in Fixed-Bed Adsorption, Ind. Eng. Chem. Res. 2016, 55, 4734-4748) the authors discussed the a priori prediction of the axial dispersion coefficient from available correlations versus obtaining it and also mass transfer ... Read More

Heat generation breakdown of Lithium-ion Batteries

ZhiJun Qiu [1], WeiDong Fu;JiaXin Li [1],
[1] Contemporary Amperex Technology Co.

Abstract:The thermal behavior of lithium ion batteries could be investigated by efficient simulation method [1,2]. Here, we developed an electrochemical-lumped thermal analytical model to analyze the thermal response and heat breakdown of a pouch LiNi1/3Co1/3Mn1/3O2 battery (3Ah) under ... Read More

Virtual Thermal Ablation in the Head and Neck using COMSOL Multiphysics

U. Topaloglu[1], Y. Yan[2], P. Novak[2], P. Spring[3], J. Suen[3], and G. Shafirstein[3]
[1] Department of Information Technology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
[2]Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
[3]Department of Otolaryngology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA

Thermal ablation in the head and neck requires accurate thermal dose delivery to target tissue while protecting the structure and function of nearby tissue and organs. In this study, we present a method that allows importing Computed Tomography (CT) scans to COMSOL, in order to model ... Read More

Finite-Element Evaluation of Thermal Response Tests Performed on U-Tube Borehole Heat Exchangers

E. Zanchini, and T. Terlizzese
[1]Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale, Università di Bologna, Bologna, Italy

The results of two thermal response tests recently performed on two vertical borehole heat exchangers (BHEs) are presented. The BHEs have the same cross section and a depth of 100 m and 120 m respectively. The evaluation of the thermal properties of the ground and grout are ... Read More

Modeling a 3D Eddy Current Problem Using the Weak Formulation of the Convective A-phi Steady State Method

J. Bird[1]

[1]University of North Carolina, Charlotte, North Carolina, USA

A 3D model of a magnetic rotor both rotating and translationally moving at high-speed over a conductive guideway is modeled in steady-state using the convective A*-Φ formulation. The presence of the magnetic rotor (source field) is incorporated into the formulation via the boundary ... Read More

2D Extraction of Open-Circuit Impedances of Three-Phase Transformers

R. Escarela-Perez[1], E.A. Gutierrez-Rodriguez[2], J.C. Olivares-Galvan[1], M.S. Esparza-González, and E. Campero-Littlewood[1]


[1]Departamento de Energia, Universidad Autonoma Metropolitana - Azcapotzalco, Mexico D.F., Mexico
[2]Instituto Tecnologico de Aguscalientes, Aguascalientes, Mexico

This work is concerned with the study of the asymmetrical phenomenon observed in three-phase transformers during the standard short-circuit test. The purpose of our work is to see if the asymmetric measurements can be predicted with the use of 2D finite-element models. To this end, we ... Read More