See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2019 Collection

Pump and Ejector Design in Wastewater Treatment Pilot Equipment new

G. Actis Grande[1], A. Pezzin[1], G. Rovero[1]
[1]Politecnico di Torino, Torino, Italy

Ozone treatment is an oxidative process used in wastewater treatment plant to demolish complex organic molecule. In the case of textile industry is required to adequately remove residual color, demolishing the chromophoric bonds or groups in the dye molecules. A useful method for ... Read More

Particle Beam Tracking with COMSOL Multiphysics® Software new

O. Karamyshev[1], L. J. Devlin[1], C. P. Welsch[1]
[1]University of Liverpool, Liverpool, UK

Accurate and efficient tracking is important for designing particle accelerators as well as many other applications which use electromagnetic fields to control particles. We have developed a tracking code in MATLAB® Simulink® which uses electric and magnetic fields calculated in COMSOL ... Read More

Numerical Modelling of the Plasma Discharge During Electron Beam Welding (EBW) new

D. Trushnikov[1], G. Mladenov[2]
[1]Perm National Research Polytechnic University, Perm, Russia
[2]Institute of Electronics of Bulgarian Academy of Sciences, Sofia, Bulgaria

This work describes a model for plasma formation in the keyhole and above the EBW zone. The parameters of the plasma are closely connected to the characteristics of the thermal action of the electron beam on the welded metal, which allows operational control and study of EBW. The ... Read More

Simulating Organogenesis in COMSOL Multiphysics®: Image-Based Modeling new

D. Iber[1,3], Z. Karimaddini[1,3], E. Unal[1,2], D. Menshykau[1,3]
[1]D-BSSE, ETH Zurich, Basel, Switzerland
[2]DBM University of Basel, Basel, Switzerland
[3]Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland

Mathematical Modeling has a long history in developmental biology. Advances in experimental techniques and computational algorithms now permit the development of increasingly more realistic models of organogenesis. In particular, 3D geometries of developing organs have recently become ... Read More

Multiphysics Simulation of Polymer-Based Filters for Sub-Millimeter Space Optics new

N. Baccichet[1], G. Savini[1]
[1]Department of Physics and Astronomy, University College London, London, UK

Multiphysics Simulation of Polymer-Based Filters for Sub-Millimeter Space Optics This work focuses its analysis on polymer-based filters used in space-borne astronomical instrumentation for Cosmic Microwave Background Radiation and Far-Infrared observations. Most of these ... Read More

Numerical Analysis of the Response of Thick Wires to Extreme Dynamic Electro-Mechanical Loads new

R. Cunrath[1], M. Wickert[2]
[1]Fraunhofer EMI, Efringen-Kirchen, Germany
[2]Fraunhofer EMI, Freiburg im Breisgau, Germany

Research at Fraunhofer EMI addresses the response of materials in extreme dynamic loads. Besides mechanical or thermal loads, intense electric pulse currents also represent an extreme dynamic load. Experimentally, metallic samples, mainly thick wires, were electro-mechanically loaded ... Read More

Simulation of Cascaded Thermoelectric Devices for Cryogenic Medical Treatment new

P. Aliabadi[1], S. Mahmoud[1], R. K. AL-Dadah[1]
[1]Mechanical Engineering Department, University of Birmingham, Birmingham, UK

This study is focused on using a thermoelectric device (TED) as an alternative to the cryogenic liquid for cooling cryosurgical probe used for cancerous tissue ablation. Thermoelectric device, namely Peltier, is a solid state device which converts electric current to thermal gradient. In ... Read More

Computational Modeling of the Impact of Solar Irradiance on Chemical Degradation of Painted Wall Hangings in a Historical Interior new

Z. Huijbregts[1], A. van Schijndel[1], H. Schellen[1], K. Keune[2], M. Eikema Hommes[3,4]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands
[2]University of Amsterdam, Amsterdam, The Netherlands
[3]Cultural Heritage Agency, Amsterdam, The Netherlands
[4]Delft University of Technology, Delft, The Netherlands

The historic Hofkeshuis in Almelo (The Netherlands) locates a unique work of art: three walls in the rear salon of the private house are covered with an 18th century series of painted wall hangings (Figure 1). The simple and similar pigmentation of the paintings, their original hanging, ... Read More

Simulations of Lateral Flow and Vertical Flow Microarray Assays for Point of Care Diagnostics new

G. E. Svedberg[1], L. Lama[1], J. Gantelius[1]
[1]Science for Life Laboratory, Stockholm, Sweden

Paper based lateral flow assays are widely used as point of care devices for disease diagnostics due to their low cost, short run time and ease of use. Binder molecules specific for certain molecular biomarkers of interest are typically deposited as dots or lines on paper strips, ... Read More

MEMS Acoustic Pixel new

A. Arevalo[1], I. G. Foulds[2]
[1]King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
[2]The University of British Columbia, Vancouver, BC, Canada

A COMSOL Multiphysics® simulation was used to simulate the behavior of a micro-membrane (Acoustic Pixel) to be used as a potential acoustic transducer. The MEMS and Piezoelectric devices interfaces were used to simulate such transducer. A four-cantilever spring configuration is initially ... Read More