Per page:

Results & Visualization Blog Posts

Surface, Volume, and Line Plots: Visualizing Results on a Heat Sink

September 1, 2014

Plotting visual simulation results on a model geometry is a great way to unveil the sometimes-mysterious physics happening behind the scenes in a device. Like learning a language, knowing how to use postprocessing tools helps designers investigate and understand their designs and processes more fully. Surface, volume, and line plots are three of the most common plot types used in postprocessing, and are applicable to many simulations.

Combining Parallel Slices to Create an Animation

August 26, 2014

Creating animations is an effective way to present and visualize simulation results. In COMSOL Multiphysics, this is fairly straightforward using the Player node for time-dependent or parameter sweep study types. But, can we animate how the solution changes along a direction in a 3D steady-state model? The answer is yes. Here, we will learn how to combine parallel slices to create an animation for a 3D steady-state example model, using a three-step process.

Solution Joining for Parametric, Eigenfrequency, and Time-Dependent Problems

July 28, 2014

In a previous blog entry, we discussed the join feature in COMSOL Multiphysics in the context of stationary problems. Here, we will address parametric, eigenfrequency, frequency domain, and time-dependent problems. Additionally, we will compare and contrast the built-in with and at operators versus solution joining.

How to Join Solutions in COMSOL Multiphysics

July 1, 2014

In engineering analysis, the need to compare solutions obtained under different circumstances frequently arises. Some possible scenarios include comparing the effect of different load or parameter configurations, and enveloping results to find the worst or best case at each point of the domain. In each of these and other similar cases, you need access to more than one data set. Here’s how to accomplish such tasks using COMSOL Multiphysics.

Computing Total Normal Flux on a Planar Surface

June 9, 2014

Today, we will find out how to compute the total normal flux through a cross-section plane, passing through your simulation geometry. This can help us bridge the gap between simulations and experiments where, in the latter, it is often easier to physically measure the total flux. The approach discussed here works for any type of physics problem as long as we can identify the appropriate flux term corresponding to that physics.

How to Include Geometry Surfaces with Solution Plots

May 26, 2014

When you have solved a model, you want to visualize your results in the best way possible. Today, we will explain how to include geometry surfaces with your solution plots, by way of an RF modeling example.

The Graphics Window: Effective and Beautiful Postprocessing

March 19, 2014

Using the Graphics window in COMSOL Multiphysics can be a little tricky if you’re not too familiar with what it can do. But once you know the shortcuts, controlling the camera and view angles to create good graphics becomes quite straightforward. I hope the techniques shown here will help you produce graphics to visualize and present your work more easily.

Plotting Spatial Derivatives of the Magnetic Field

March 5, 2014

Radiology, magnetophoresis, particle accelerators, and geophysics are all areas where it is useful to compute the spatial derivative of the magnetic field or magnetic flux density.