Per page:
Search

Blog Posts Tagged Corrosion Module

The Boundary Element Method Simplifies Corrosion Simulation

February 17, 2016

As of version 5.4 of the COMSOL Multiphysics® software, there are features for simulating corrosion in slender structures. This significantly speeds up the total time spent when working with structures such as oil platforms. By using the boundary element method (BEM) and specialized beam elements in the Current Distribution, Boundary Elements interface, there is no longer a need for a finite element mesh to resolve the whole 3D structure, saving time for large corrosion problems consisting of slender components.

Avoiding Ship Hull Corrosion with ICCP and Simulation

August 6, 2015

Avoiding corrosion in a harsh ocean environment often requires the use of cathodic protection methods. These utilize different tools, such as sacrificial anodes or impressed currents, to help maritime-based industries stay afloat. One such system, impressed current cathodic protection (ICCP), mitigates corrosion by applying an external current to a ship hull. The efficiency of this method depends on factors such as the use of a coated propeller. Here, we use simulation to investigate how coating a propeller affects ICCP efficiency.

Modeling Corrosion for Automotive Applications

July 20, 2015

Corrosion is a widely encountered issue in the automotive industry. To account for and prevent this problem, industry leaders often run experiments to test the corrosion resistance of vehicles. Simulation, however, offers a simplified approach to addressing this phenomenon in automobiles — one that saves time, money, and resources.

A Strategy for Designing Corrosion-Resistant Materials

September 3, 2014

Billions of dollars are spent each year in the U.S. to repair corrosion damage. To help reduce the high cost of corrosion, engineers at the Naval Research Laboratory (NRL) in Washington, D.C. are using multiphysics simulation to gain a better understanding of the fundamental mechanism. A successful research outcome at NRL will establish the correlation between metal microstructure, corrosion, and mechanical strength. Material designers could then develop stronger, corrosion-resistant materials using this new information.

Intro to Corrosion Modeling for the Oil and Gas Industry

May 22, 2014

If you work in the oil and gas industry dealing with offshore drilling, corrosion is your worst enemy. A corroded oil platform is a dangerous platform and it can cost you a lot — in both lives and money. To avoid such a dark fate, you need to safeguard the steel structure from corrosion via a protection system, such as the cathodic protection process shown here.

Which Current Distribution Interface Do I Use?

February 10, 2014

When designing electrochemical cells, we consider the three classes of current distribution in the electrolyte and electrodes: primary, secondary, and tertiary. We recently introduced the essential theory of current distribution. Here, we illustrate the different current distributions with a wire electrode example to help you choose between the current distribution interfaces in COMSOL Multiphysics for your electrochemical cell simulation.

Theory of Current Distribution

February 7, 2014

In electrochemical cell design, you need to consider three current distribution classes in the electrolyte and electrodes. These are called primary, secondary, and tertiary, and refer to different approximations that apply depending on the relative significance of solution resistance, finite electrode kinetics, and mass transport. Here, we provide a general introduction to the concept of current distribution and discuss the topic from a theoretical stand-point.

Another Danger with Corrosion

June 12, 2012

One dangerous aspect of corrosion is that it can compromise the stability of structures, which is particularly relevant in the naval industry, where material failure leads to leaks. However, another danger of corrosion has recently become apparent.


9–16 of 16
Next
Last
EXPLORE COMSOL BLOG