Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Undergraduate Studies of Supersonic Flow from a Converging-Diverging Nozzle

K. Stein[1], N. Gessner[1], R. Peterson[1], A. Wiedmann[1]
[1]Department of Physics, Bethel University, St. Paul, MN, USA

Undergraduate studies are carried out to examine the supersonic flow from an axisymmetric converging-diverging nozzle. Flow in the nozzle is initiated by the rupture of a diaphragm that is positioned between the nozzle and a 1-gallon pressurized air tank. Simulations are carried out in COMSOL Multiphysics® for unsteady, axisymmetric flow with the High Mach Number interface of the CFD Module. ...

Kinetic Parameters for Gas Phase Photocatalysis: Analytic Versus CFD Approach - new

S. Denys[1], S. Verbruggen[1], S. Lenaerts[1]
[1]Sustainable Energy and Air Purification, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium

Introduction Among the advanced oxidation processes (AOPs) for removal of volatile organic compounds (VOCs) from air, photocatalytic oxidation (PCO) is considered a very promising technology [1,2]. PCO can achieve mineralization of harmful VOCs to CO2 and H2O using only UV light [3]. A main challenge is to find appropriate kinetic models and parameters that accurately describe the rate of ...

Multiphysical Modelling of Keyhole Formation during Dissimilar Laser Welding

I. Tomashchuk [1], I. Bendaoud [1], P. Sallamand [1], E. Cicala [1], S. Lafaye [2], M. Almuneau [2],
[1] Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université de Bourgogne – Franche Comté, France
[2] Laser Rhône-Alpes, Le Fontanil (Grenoble), France

Time-dependent multiphysical simulation of pulsed and continuous laser welding of dissimilar metals, based on Moving Mesh (ALE) approach, is proposed. Strong coupling between heat transfer, laminar compressible flow and ALE is used. The model was validated for a case of single material (Ti6Al4V alloy) and then applied for studying of keyhole dynamics and melted zone development in a case of ...

Coupling Heat Transfer in Heat Pipe Arrays with Subsurface Porous Media Flow for Long Time Predictions of Solar Rechargeable Geothermal Systems

P. Oberdorfer[1], R. Hu[1], M. Azizur Rahman[1], E. Holzbecher[1], M. Sauter[1], P. Pärisch[2]
[1]Applied Geology, Geoscience Centre, University of Göttingen, Göttingen, Germany
[2]Institute for Solar Energy Research Hameln/Emmerthal (ISFH), Emmerthal, Germany

An increased share of renewable energies is regarded as an integral part of a strategy towards a sustainable future. With regard to the heat supply sector this may be achieved using solar thermal collectors or heat pump systems with borehole heat exchangers. During the last years solar thermal and geothermal systems have generally been installed separately. Now, several proposals are discussed ...

The Microgeometry of Pressure Seals - new

R. P. Ruby[1], G. Kulkarni[2], U. Kanade[1]
[1]Noumenon Multiphysics Pvt. Ltd., Pune, Maharashtra, India
[2]Oneirix Engineering Laboratories Pvt. Ltd., Pune, Maharashtra, India

Seals or gaskets that are compressed between walls of a container are important to many industrial applications. Understanding the performance of such seals requires an understanding of the microscopic geometry of the sealing surfaces, because the fluid seeps around the undulations of such surfaces. This paper presents strong computational evidence that the microgeometry of such surfaces depends ...

A Research of Electro-thermal Coupling Model for Lithium-ion Battery with Multiphysics in COMSOL Multiphysics®

戴海峰 [1], 许阳 [1], 朱建功 [1],
[1] 同济大学,上海,中国

A new method is proposed to study battery thermal behavior under nature convection condition, especially focusing on temperature rising and inhomogeneity of battery. Using porous electrode theory, an electrochemical and homogenization heat source thermal coupling model and an electrochemical-distributed heat source thermal coupling model are established. In the meanwhile, to improve inhomogenity ...

Modelling and Simulation of Single Phase Fluid Flow and Heat Transfer in Packed Beds using COMSOL Multiphysics

S. Sachdev[1], S. Pareek[1], B. Mahadevan[1], A. Deshpande[1]
[1]Department of Chemical Engineering, BITS Pilani Goa Campus, Zuarinagar, Goa, India

Computational fluid dynamics has emerged as an advanced tool for studying detailed behavior of fluid flow and heat transfer characteristics in many chemical engineering applications like packed beds. Packed beds play an important role in various chemical industries. Hence understanding the fluid flow behavior and temperature variation in different sections of packed bed is essential. Geometric ...

Numerical Simulations of a Subsonic/Supersonic Coaxial Jet for an Efficient Design of Experimental Setup - new

D. Guariglia[1], C. Schram[1]
[1]von Karman Institute for Fluid Dynamics, Sint-Genesius-Rode, Belgium

The flow field of a coaxial jet with the internal (primary) flow being subsonic and the external (secondary) flow being supersonic has been investigated with COMSOL Multiphysics® software. We used the results to correct defects in the nozzle geometry and we evaluated the effect of heat transfer on the shock-cells system. Finally, we verified the stresses in the material to avoid permanent ...

A Model of Gas Bubble Growth by COMSOL Multiphysics

B. Chinè[1,2], and M. Monno[1,3]
[1]Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione, Piacenza, Italy
[2]Instituto Tecnològico de Costa Rica, Escuela de Ciencia e Ingenierìa de Materiales, Cartago, Costa Rica
[3]Politecnico di Milano, Dipartimento di Meccanica, Milano, Italy

We use COMSOL Multiphysics to model a gas bubble expansion in a viscous liquid initially at rest, a very common system for lightweight foamed materials from metal production and polymer processing. Modelling and simulation of foam processing during the production step involves many complexities, mainly due to the coupled momentum, mass and energy transport mechanisms, presence of more phases in ...

Coupled Electric-Thermal-Fluid Analysis of High Voltage Bushing

G. Eriksson[1]
[1]ABB, Corporate Research, Västerås, Sweden

Modern power transmission systems are in general designed to operate at high voltages in order to reduce resistive losses generated by high currents. This, however, tends to increase the risk for dielectric breakdown or flashovers if the equipment is not properly designed to withstand the stress. The present work illustrates how multiphysics simulations can be used to analyze and predict the ...