Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Evidence of Unrest-Related Electromagnetic Effects in the Campi Flegrei Caldera, Italy

G. Perillo [1], G. De Natale [2], M. G. Di Giuseppe [2], A. Troiano [2], C. Troise [2],
[1] University of Naples Parthenope, Naples, Italy
[2] INGV – Osservatorio Vesuviano, Naples, Italy

Electric, magnetic and electromagnetic (em) methods are widely used to monitor active volcanoes. A review of such applications is presented in Johnston (cit). Em signals were recorded in correspondence of numerous volcanic eruptions, for example in the case of the Mt. Unzen in Giapppone, of Merapi in Indonesia, Etna in Italy and during rapid deformation in Long Valley in California. ...

Coupled Gas Flow and Thermal and Reactive Transport in Porous Media for Simulating Waste Stabilization Phenomena in Semi-Aerobic Landfill

H. Ishimori, K. Endo, T. Ishigaki, H. Sakanakura, and M. Yamada
National Institute for Environmental Studies
Tsukuba, Ibaraki

Semi-aerobic landfill has interesting structure that passively provides the atmospheric oxygen into landfilled waste due to the heat convection generated by the decomposition of landfilled waste. There are limited studies on the mechanisms of the oxygen transport. This paper presents the governing equations and parameter estimation methods for the numerical simulation of the gas fluid flow and ...

Use of COMSOL as an Educational Tool Through its Application to Ground Water Pollution

A. Modaressi-Farahmand-Razavi[1]
[1]MSS-Mat Laboratory, CNRS, Ecole Centrale Paris, Châtenay Malabry, France

Ensuring the quality of underground water and controlling its quantity is of major concern for the population. Therefore, this subject attracts many students from different specialties at different levels of their curriculum. In fact, the pedagogic objectives of the course may be different according to the level or/and interest of the students and COMSOL is used due to its versatility. In this ...

3D Modeling of Fracture Flow in Core Samples Using ?-CT Data

S. Hoyer[1], U. Exner[2], M. Voorn[1], A. Rath[3]
[1]Department of Geodynamics and Sedimentology, University of Vienna, Austria
[2]Museum of Natural History, Vienna, Austria
[3]OMV ESG-D Production Geology, Vienna, Austria

Knowledge on flow behavior in fractured reservoir rocks is of great interest in petroleum engineering as well as for geothermal assets. Due to the big difference of magnitude (fracture aperture: ~?m, lateral extension of reservoirs ~km), modeling of discrete fracture flow is not practicable on the reservoir scale, so a Darcy (or Brinkman) approximation has to be found. The key task is to find ...

The Campi Flegrei Deep Drilling Project ‘CFDDP’: Understanding the Magma-water Interplay at Large Calderas

G. De Natale[1], G. Perillo[2], C. Troise[1], and P. Gasparini[3]
[1]INGV-Osservatorio Vesuviano, Naples, Italy
[2]Università degli Studi di Napoli Parthenope, Naples, Italy
[3]AMRA scarl, Naples, Italy

Campi Flegrei caldera is a good example of the most explosive volcanism on the Earth, a potential source of global catastrophes. It has the advantage that the most interesting structural details and main volcanic features appear located at shallower depth, making it a natural candidate for a deep drilling project aimed to understand the volcanic structure. The CFDDP project, aims to ...

Modeling CO2 storage Using Coupled Reservoir-Geomechanical Analysis

T.I. Bjørnarå, F. Cuisiat, E. Aker, and E. Skurtveit
Norwegian Geotechnical Institute(NGI), Oslo, Norway

The geomechanical effects related to CO2 injection into the Krechba formation at In Salah, Algeria, are considered through a coupled modeling approach to simulate simultaneously CO2 migration in the aquifer and the surrounding formations, as well as the poro-elastic stress changes occurring during injection. The model is based on the simultaneous resolution of the governing equations for two ...

BHE Field Design by Superposition of Effects in Space and Time

S. Lazzari[1], E. Zanchini[1]
[1]DIENCA - University of Bologna, Bologna, Italy

A design method for BHE fields in the absence of groundwater flow is presented, based on the superposition of effects. The effects of any periodic heat load with a period of one year can be obtained by a weighted sum of the effects of a monthly unit step heat load, properly displaced in time. The interference among BHEs is evaluated by the superposition of effects in space. The result of the ...

Finite Element Solution of Nonlinear Transient Rock Damage with Application in Geomechanics of Oil and Gas Reservoirs

S. Enayatpour[1], T. Patzek[1]
[1]The University of Texas at Austin, Austin, TX, USA

The increasing energy demand calls for advances in technology which translate into more accurate and complex simulations of physical problems. Understanding the rock damage is essential to understanding the geomechanics of hydrocarbon reservoirs. The fragile microstructure of some rocks makes it difficult to predict the propagation of fracture in these rocks, therefore a mathematical model is ...

Erosion Of Buffer Caused By Groundwater Leakages Based On ESM-Application

O. Punkkinen[1], A. Jorma[1], K. Kari[2], and M. Olin[3]
[1]B+Tech, Helsinki, Finland
[2]Posiva, Eurajoki, Finland
[3]VTT, Espoo, Finland

In this work the issue of saturation phase erosion caused by groundwater leakages was approached both experimentally and computationally by employing COMSOL\'s Earth Science Module. We evaluated the total mass of eroded bentonite out of a cylindrical erosion channel both numerically and experimentally, and studied its dependence on time. It was observed that logarithmic eroded mass loss as a ...

Modeling Pit Lake Flooding After Mine Closure

S. Jordana[1], A. Nardi[1]
[1]Amphos 21, Barcelona, Spain

Most of mining works, either on the surface or in the underground, demand continuous groundwater pumping in order to operate under dry conditions. When the mining activity stops, dewatering also stops and mining facilities begin to flood, quite quickly at the beginning but becoming slower as the water level in the pit lake rises. The rise of the surface of the lake decelerates due to the bigger ...