See How Multiphysics Simulation Is Used in Research and Development


Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection
Geophysics and Geomechanicsx

Modeling Contaminant Diffusion in Highly Complex Rock Structures

N. Diaz[1], A. Jakob[1], L. Van Loon[1], and D. Grolimund[2]
[1]Paul Sherrer Institut NES/LES, Villigen PSI, Switzerland
[2]Paul Sherrer Institut NES/SLS, Villigen PSI, Switzerland

Opalinus clay is currently being proposed as a potential host rock for radioactive waste repository in deep geological formation. It is then important for performance assessments to understand the transport properties of such rocks. Clay materials are characterized by low hydraulic ... Read More

A 3D Thermal Model for Lunar Surface Using COMSOL Multiphysics® Software: Validation and Results

K. Durga Prasad [1], S.V.S. Murty [1], V. K. Rai [1],
[1] Planetary Sciences Division, Physical Research Laboratory, Ahmedabad, Gujarat, India

A comprehensive three dimensional finite element thermal model has been developed using COMSOL Multiphysics® software to understand the thermo-physical behaviour of the uppermost regolith layer of the moon. The model can simulate variable layers, layer thickness and dimensions and can ... Read More

Effect of S-p Relation Model on DNAPL Migration Simulation Result

H. Ishimori[1], and K. Endo[1]
[1]National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan

To consider effective counter measures against ground water contaminated with dense non-aqueous phase liquids (DNAPLs) such as chlorinated solvents, it is first important to understand the mechanism of their migration in heterogeneous aquifer. In addition, numerical analysis models ... Read More

Elastoplastic Models of the Interaction between Active Fronts of the Southern Alps and Dinarides (NE Italy and NW Slovenia)

M. Coccia[1], E. Carminati[1], F. Rolandone[2], M. Battaglia[1], D. Zuliani[3], and P. Fabris[3]
[1]Università La Sapienza, Roma, Italy
[2]Université Pierre et Marie Curie, Paris, France
[3]Centro Ricerche Sismologiche, Udine, Italy

We use GPS measurements and Finite Element analysis to investigate strain accumulation in the interaction between active fronts of the Southern Alps and Dinarides at the northern edge of the Adriatic micro-plate. We develop a three dimensional model of the area taking into account the ... Read More

Simulation Of Soil Remediation Polluted By Hydrocarbons Using A Non-Thermal Atmospheric Plasma

J. Rojo, S. Ognier, and S. Cavadias
Laboratoire de Génie des Procédés Plasmas et Traitements de Surfaces, University Pierre et Marie Curie, Paris, France

A lot of techniques are developed to treat soils polluted by hydrocarbons pollutants: incineration, thermal treatment, extraction, chemical oxidation, bioremediation… Some of these techniques are very energy consuming (incineration, thermal treatment…) and often need a subsequent ... Read More

Coupled Hydrochemical Modeling for the Optimal Design of an In-situ Redox Experiment

P. Trinchero[1], J. Molinero[1], G. Román-Ross[1], A. Nardi[1], L.M. De Vries[1], T. Karvonen[2], P. Pitkänen[3]
[1]Amphos 21, Barcelona, Spain
[2]WaterHope, Helsinki, Finland
[3]Posiva, Eurajoki, Finland

In this work, we present a number of scoping calculations that have been carried out to design an in-situ redox experiment (Figure 1) focused on assessing potential changes in the pH and redox conditions and in the buffering capacity of the Olkiluoto bedrock (i.e. the site for the ... Read More

Lava Tubes at Shallow Depth

M. Di Bari, and G. Zito
University of Bari, Italy

Many theoretical studies concerning lava tubes focus on the thermal disturbances generated on the earth surface. Recently a solution was suggested, where a lava tube located at a great depth h in the soil, where the ratio between h to the major axis of the ellipse a is ... Read More

页岩气水基钻井液钻井井壁稳定性研究 new

杨子莘 [1], 马天寿 [1], 练章华 [1],
[1] 西南石油大学

2015年由美国大发起页岩气革命成功地使美国从油气进口国转变为油气出口国。这使得页岩气成为能源领域关注的热点。页岩气与煤炭和石油相比更为清洁,且储量更为丰富。开发页岩气的两项关键技术是水平井钻井技术和压裂改造地层技术。 然而,由于页岩相比于其他岩石水化学活性更强,导致在水平井钻穿储层过程中井壁极容易垮塌失稳。油基泥浆的使用可以克服上述问题,但成本昂贵且受环保限制。水基泥浆的普及依赖于对页岩水化的深入理解。在页岩水化反应过程中,温度场、离子浓度场、渗流场、应力场均不同程度地作用在井壁周围岩石,而且相互耦合作用随时间不断变化 ... Read More

考虑流固耦合的煤层气压裂水平井数值模拟研究 new

路广 [1], 练章华 [1],
[1] 西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都

煤层气开采过程中煤层所受应力、孔隙压力的变化以及气体的吸附解吸,会导致煤体骨架和孔隙体积发生变化,改变煤层的渗流能力。基于多孔弹性理论、渗流力学并考虑吸附变形,建立了煤层压裂水平井的物理模型,并建立了煤体变形和气体流动的全耦合数学模型,推导出了渗透率的动态变化模型。利用数值分析软件Comsol Multiphysics对煤层气的开发特征及规律进行了数值模拟,最终实现对模型中关键参数的敏感性和压裂裂缝参数的影响进行分析。 Read More

TDS-based porous flow modeling in subduction zone new

Changyeol Lee [1],
[1] Faculty of Earth Systems and Environmental Sciences, Chonnam National University, Gwangju, Republic of Korea

Slab dehydration and fluid migration in subduction zone is important because it allows us to understand characteristics of the arc volcanism such as migration of the volcano front as well as the global circulation of water and carbon. To minimize the technical difficulties in the ... Read More