See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Multiphysicsx

Modeling the Effect of Headspace Steam on Microwave Heating of Mashed Potato

J. Chen[1], K. Pitchai[1], D. Jones[1], J. Subbiah[1]
[1]University of Nebraska-Lincoln, Lincoln, NE, USA

Introduction: Domestic microwave ovens are widely used to heat food products, because of rapid and convenient heating. Nonuniform heating is the biggest issue in microwave heating process, which also causes food quality and safety issues. Microwave heating models are promising tools to ... Read More

Modeling of Packed Bed Reactors: Hydrogen Production by the Steam Reforming of Methane and Glycerol

A. Dixon[1], B. MacDonald[1], A. Olm[1]
[1]Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA

The conventional route to hydrogen production is by steam reforming of methane (MSR) in a multitubular packed bed. With the increasing use of biodiesel as a renewable fuel, interest has grown in steam reforming of the excess glycerol produced as a side product (GSR). We use COMSOL ... Read More

Modeling of Directional Dependence in Nanowire Flow Sensor

A. Piyadasa[1,3], P. Gao[1,2,3]
[1]Department of Physics, University of Connecticut, Storrs, CT, USA
[2]Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, USA
[3]Institute of Materials Sciences, University of Connecticut, Storrs, CT, USA

3D finite element analysis model has been constructed for testing the directional dependence in a novel form of nanowire array gas flow sensor. Single nanowire (p-type single crystal Silicon) model is developed using fluid structure interaction and piezoresistivity components in the MEMS ... Read More

Modeling Heat and Moisture Transport During Hydration of Cement-Based Materials in Semi-Adiabatic Conditions

E. Hernandez-Bautista[1,2], D. Bentz[1], S. Sandoval-Torres[2], P. Cano-Barrita[2]
[1]National Institute of Standards and Technology, Gaithersburg, MD, USA
[2]Instituto Politécnico Nacional/CIIDIR Unidad Oaxaca, Oaxaca, México

The process of accelerated curing of pre-cast concrete has a significant importance in the thermal behavior of concrete. A multiphysics model that describes hydration and heat and mass transport in cement based materials was developed. The hydration reactions are described by a maturity ... Read More

Strong Localization and Rapid Time Scales of Superheating in Solid-State Nanopores

E. Levine[1], G. Nagashima[1], D. Hoogerheide[1], M. Burns[2], J. Golovchenko[1]
[1]Harvard University, Cambridge, MA, USA
[2]Rowland Institute at Harvard University, Cambridge, MA, USA

Extreme localized superheating and homogeneous vapor bubble nucleation have recently been demonstrated in a single nanopore in thin, solid state membranes [1]. Aqueous electrolytic solution present within the pore is superheated to well above its boiling point by Joule heating from ionic ... Read More

Hydrophone Acoustic Receiver Modeling: Turbulent Flow Modeling and Acoustic Analysis

D. Groulx[1], A. Bharath[1], S. Campbell[1]
[1]Department of Mechanical Engineering, Dalhousie University, Halifax, NS, Canada

The field of underwater acoustics research is constantly growing with the ongoing improvement of acoustic measuring techniques. An acoustic hydrophone receiver is a passive listening device which is widely used in biological research and sonar technology. The hydrophone however suffers ... Read More

Thermal Modeling in a Historical Building - Improving Thermal Comfort Through the Siting of a Passive Mass of Phase Change Material

D. Groulx[1], F. Herbinger[1], L. Desgrosseilliers[1]
[1]Mechanical Engineering, Dalhousie University, Halifax, NS, Canada

A model of an office room was created in the COMSOL Multiphysics® software to simulate heat transfer and study the impact of siting a mass of phase change material (PCM) in a room to increase thermal comfort. This study determined that incorporating the selected PCM, butyl stearate, in ... Read More

Estimation of Hydraulic Conductivity for a Heterogeneous Unsaturated Soil Using Electrical Resistivity and Level-Set Methods

T. K. Chou[1], M. Chouteau[1], J. S. Dubé[2]
[1]École Polytechnique de Montréal, Montréal, QC, Canada
[2]École de Technologie Supérieure, Montréal, QC, Canada

The estimation of the soil saturated hydraulic conductivity (Ks) is crucial in understanding water flow and transport of contaminants. There are many hydrological techniques available in determining this parameter (constant head method, in-situ soil analysis, etc...). While these ... Read More

Stochastic Diffusion of Calcium Ions Through a Nanopore in the Cell Membrane Created by Electroporation

O. Henao[1], V. Gómez[1], I. De La Pava[1], J. Sánchez [1]
[1]Grupo Fisiología Celular y Aplicada, Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia

We simulated the diffusion of calcium ions through a nanopore created in the cell membrane by electroporation, in presence and absence of the external electric field responsible of the membrane permeabilization. First we solved the set of coupled differential equations that describe the ... Read More

Simulation of Normal and Cancerous T-cell Membrane Electroporation

O. Henao[1], V. Gómez[1], I. De la Pava[1], J. Sánchez[1]
[1]Grupo Fisiología Celular y Aplicada, Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia

Electroporation is an increase of the cell membrane permeability due to the formation of aqueous pores in it when the cell is under the influence of an intense electric field [1][2]. The formation of such pores in the membrane can be used to enhance the uptake of chemotherapeutic drugs ... Read More