Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Non-Isothermal Kinetics of Water Adsorption in Compact Adsorbent Layers on a Metal Support

G. Füldner, and L. Schnabel
Fraunhofer Institute of Solar Energy Systems, Freiburg, Germany

Water adsorption in highly porous materials can be used in heat transformation processes for the efficient use of energy in heat and cold production. One technology for such a thermal heat transformation is the use of water adsorption in highly porous adsorbents like zeolite. To optimize the power density of compact thin layer adsorbent beds, a one-dimensional model of the coupled heat and mass ...

Modeling of Charge Transport in Ion Bipolar Junction Transistors

A.V. Volkov[1], K. Tybrandt[1], I.V. Zozoulenko[1], M. Berggren[1]
[1]Organic Electronics, ITN, Linköping University, Norrköping, Sweden

Modeling of an ion bipolar junction transistor (IBJT) is performed using the COMSOL Multiphysics® software. Our model describes the IBJT which was developed and characterized [1]. The IBJT under consideration consists of an anion-selective collector and emitter, a cation-selective base and a neutral junction. The physical model is based on Poisson and Nernst-Planck (PNP) equations. A two ...

Improvements in the Modeling of the Self-ignition of Tetrafluoroethylene

M. Beckmann-Kluge, F. Ferrero, V. Schröder, A. Acikalin, and J. Steinbach
Federal Institute for Materials Research and Testing, Technical University, Berlin, Germany

Tetrafluoroethylene (TFE) is a gas widely employed in industry, which can under specific circumstances experience an exothermic dimerization to octafluorocyclobutane. If the heat generated by this reaction cannot be dissipated to the surroundings, the temperature inside the reactor will continue rising, leading to conditions where TFE can decompose in tetrafluoromethane and carbon black. This ...

Modeling of Chemo-Mechanical Coupled Behavior of Cement Based Material

D. Hu[1], F. Zhang[2], H. Zhou[3], and J. Shao[1]
[1]LML, UMR8107, CNRS, University of Lille I, Lille, France
[2]School of Civil Engineering and Architecture, Hubei University of Technology, Wuhan, China
[3]State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China

A lixiviation-mechanical coupled model is developed for fiber reinforced concrete within this framework; both the influence of chemical degradation on short and long term mechanical behavior and the influence of mechanical loading on the diffusion coefficient can be considered. The elastic mechanical properties are written as function of chemical damage. A Drucker–Prager typed criterion with ...

Heat and Mass Transfer in Reactive Multilayer Systems (RMS)

M. Rühl[1], G. Dietrich[2], E. Pflug[1], S. Braun[2], A. Leson[2]
[1]TU Dresden, Laser and Surface Technology, Dresden, Germany
[2]IWS Dresden, Fraunhofer Institute for Material and Beam Technology, Dresden, Germany

Established joining techniques like welding, soldering or brazing typically are characterized by a large amount of heat load of the components. Especially in the case of heat sensitive structures like MEMS this often results in stress induced deformation and degradation or even damaging of the parts. A back door of this problem are Reactive Multilayer Systems (RMS). These foils consist of ...

Penetration of Moisture in a Solar Panel Edge Seal

P.K. Mercure[1]
[1]The Dow Chemical Company, Midland, MI, USA

Photovoltaic systems can degrade with moisture. The addition of an edge-seal containing a desiccant can reduce the amount of water reaching the interior. This report discusses the modeling of the water transport into the system to determine the amount of edge seal and desiccant required. The moving freezing front of the Stefan heat-transport problem is used to model a moving moisture ...

Multiphase Transport with Large Deformations Undergoing Rubbery-Glassy Phase Transition: Applications to Drying

T. Gulati[1], A. Datta[1]
[1]Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA

Drying of biomaterials such as foodstuffs involves mass, momentum and energy transport along with large shrinkage of the porous material, which have significant effects on their final quality. Foodstuffs exhibit non-linearity when undergoing large deformations that affect the transport process in a critical way. Thus, it becomes important to perform a two-way coupling of the multiphase transport ...

Modeling the Rheology of Liquid Detergents

Vincenzo Guida
R&D Process Design Principal Engineer, Procter & Gamble, Italy

Outline of presentation: Comsol is a very flexible platform, ideal to model rheology modification under flow Analogy with reactive flows allows modeling of both thixotropy and gelation with decent level of accuracy and predictability It is possible, to a certain extent, to use 1D rheology to extrapolate 3D behavior ---------------------------------- Keynote speaker's biography:Vincenzo ...

Modeling of Asphaltenes and Oil Shale Pyrolysis - new

J. P. Mmbaga[1], F. Munoz[2], S. Dhir[1], R. Gupta[1], R. E. Hayes[1], M. Toledo[2]
[1]University of Alberta, Edmonton, AB, Canada
[2]Departamento de Ingenieria Mecanica, Universidad Tecnica Federico Santa Maria, Valparaiso, Chile

Pyrolysis is a key step in the conversion of carbonaceous materials into useful products. In this study, we investigate the pyrolysis of asphaltene and oil shale, both experimentally and numerically. COMSOL Multiphysics® software is used to model the combined effects of fluid flow in porous media, mass transfer of species, heat transfer, and reaction kinetics. Gas evolution and the porosity ...

Simulations of Scanning Electrochemical Microscopy Experiments in Pure Negative and Positive Feedback Mode with Ring Microelectrodes

J. Mauzeroll[1], M. Mayoral[1], and D. Fabre[1]
[1]Department of Chemistry, Université du Québec à Montréal, Montreal, Quebec, Canada

Scanning electrochemical microscopy (SECM) is a powerful tool recently developed for studying structures and processes in micrometer and submicrometer sized systems. It can probe electron, ion, and molecule transfers, and other reactions at solid-liquid, and liquid-liquid, interfaces . This versatility allows for the investigation of a wide variety of processes, from metal corrosion to ...