See How Multiphysics Simulation Is Used in Research and Development


Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection
2011 - Bostonx

Making Cartograms and Using them for Data Acquisition

P. Mercure[1], and R. Haley[2]
[1]The Dow Chemical Company, Midland, MI
[2]ATM Research, Midland, MI

We demonstrate cartogram construction, where a geographical map is distorted to represent some measure, for example population, while trying to keep the shape of regions recognizable. We then apply this cartogram construction technique to optimize thermocouple locations. A heat ... Read More

Thermal Stress in a Zero Thermal Expansion Composite

C. Romao, and M. White
Dept. of Chemistry and Institute for Research in Materials
Dalhousie University
Halifax, NS
Canada

A series of 2-D finite element models of a ZrO2-ZrW2O8 composite system were created in COMSOL Multiphysics to study the effect of pores between the matrix (ZrO2) and filler (ZrW2O8) materials. Pores were modeled as ellipses concentric with the filler particles. Seventeen model ... Read More

Optimization of the Gas Flow in a GEM Tracker with COMSOL and TENDIGEM Development

F. Noto[1,2], V. Bellini[1,2], E. Cisbani[3,4], V. De Smet[1,5], F. Librizzi[6], F. Mammoliti[1,2], and C. Sutera[6]
[1]Dipart. di Fisica ed Astronomia, Università di Catania, Catania, Italy
[2]INFN – Sezione di Catania, Catania, Italy
[3]IINFN – Sezione di Roma - Sanità Group, Roma, Italy
[4]Italian National Institute of Health, Roma, Italy
[5]Haute Ecole Paul-Henri Spaak, ISIB, Bruxelles, Belgium
[6]NFN - Sezione di Catania, Catania, Italy

The Gas Electron Multiplier (GEM) technology has been proven to tolerate rate larger than 50 MHz/cm2 without noticeable aging and to provide the sub millimeter resolution on working chambers up to 45x45 cm2. A new GEM based tracker is under development for the Hall A upgrade at ... Read More

Polymer Compositional Profile Controls By-Product Fate from Erodible Endovascular Scaffolds

T. Shazly, and J. Ferdous
Biomedical Eng., Mechanical Eng. Dept.
University of South Carolina
Columbia, SC

Erodible polymeric scaffolds can mitigate long-term risks associated with permanent implants currently used to treat ischemic artery disease. However, safe deployment of erodible scaffolds is predicated on understanding the interactions between evolved material by-products and local ... Read More

Simulation Studies on Stress Generation and Volume Expansion due to Electrochemical Lithium Insertion in a Silicon Nanowire

G. Sikha, and J. Gordon
Applied Materials, Inc.
Santa Clara, CA

Silicon electrodes are presently being pursued as the potential negative electrode for lithium-ion batteries owing to its high gravimetric (mAh/g) and volumetric capacity (mAh/L) compared to the existing state of the art graphite electrode. Recent experimental studies have demonstrated ... Read More

Kinetics of Zebrafish Dorsoventral Patterning

B. Jordan, and P. Müller
Harvard University
Cambridge, MA

The specification of cell types and morphogenesis of many biological systems are regulated by the concentrations of signalling molecules. Many systems employ a pair of secreted short-range activators and long-range inhibitors, and these are widely used to generate complex patterns during ... Read More

Smoothing the Path to Simulation-Led Device Design

B. Pryor, and R. Pryor
Pryor Knowledge Systems
Bloomfield Hills, MI

Using modeling software such as COMSOL Multiphysics during the design phase, an approach called “simulation-led design”, allows ideas to be both inspired and validated by the use of simulations. Then, using simulations after the product is designed can shorten the prototype-testing ... Read More

Time Domain Analysis of Eddy Currents in Saturating Magnetic Materials

S. Thompson
Applied Research Laboratory
Penn State University
State College, PA

Eddy current phenomena in conducting magnetic media are well understood, although the detailed behavior at high drive levels leading to magnetic saturation are not always well explained. This paper considers the example of an infinite cylindrical magnetic core with an external coil. ... Read More

Deriving Correction Factors for a Primary Standard for Radiation Dosimetry

R. Tosh, and H. Chen-Mayer
NIST
Gaithersburg, MD

Accurate metrology of radiotherapeutic absorbed dose to water requires assessing the radiation induced temperature change. The most direct method for doing this is water calorimetry, for which the established technique involves the use of slender thermistor probes that are sealed within ... Read More

Microwave Drying of Cellular Ceramic Substrates: A Conjugate Modeling Approach to Understand Surface Moisture Migration

A. Halder, and J. George
Corning, Inc.
Painted Post, NY

Microwave drying processes are critical components in the manufacture of cellular ceramic substrates and filters. The objective of this study is to develop a comprehensive model at a small scale and include all the possible physics that are important during microwave drying processes. ... Read More

111–120 of 120
Next |
Last